This Month

IMJ Commentary

49th Doolin Lecture: AE (Freddy) Wood: The Patient, the Surgeon and the Regulator: 7th Dec 2013

Editorial

Towards Realistic and Flexible Advance Care Planning
D O’Neill

Original Papers

Cancer Incidence and Mortality Due to Alcohol: An Analysis of 10-Year Data
M Laffoy, T Mc Carthy, L Mullen, D Byrne, J Martin

Are Irish Adult General Practice Consultation Rates as Low as Official Records Suggest? A Cross Sectional Study at Six General Practices
W Behan, D Molony, C Beame, W Cullen

Adverse Event Recording Post Hip Fracture Surgery
K Doody, KMS Mohamed, A Butler, J Street, B Lenehan

A National House-staff Audit of Medical Prophylaxis in Medical Patients for the PREVENTion of Venous ThromboEmbolism (PREVENT-VTE)

The Compliance to Acute Asthma Management Protocols in Paediatric Emergency Department
F Yasin, C Martin, T Bolger

The Intensity of QuantiFERON TB-Gold Response does not Differentiate Active from Latent Tuberculosis
F Khan, O Cotter, B Kennedy, J Clair, B O’Connor, J Collins, D Curran, T O’Connor

Routine Obstetric Ultrasound Services
CA Walsh, P McAuliffe, V Kinsella, P McParland

Case Report

Clinical Tetanus in an 11 Year Old Boy
L Brandon, NF Nurdin, M Byrne, E Moylett

Research Correspondence

The Changing Epidemiology of the Bronchiolitis Epidemic in Tallaght Hospital
G O’Connor, M Tariq, P Greally, B Elnazi

Safety Comes First: Are Doctors Attentive Enough to Their Initial Clinical Assessment Notes?
C Daly, I Callanan, M Butler

Letters to the Editor

Is the NCHD Changeover Associated with Increased Risk of Intravenous Catheter Related Infections?
B Craven

Validation of the VitalPACTM Early Warning Score (VIEWS) in Acutely Ill Medical Patients Admitted
J Kellett, M Clifford, A Ridley, M Gleeson

Continuing Professional Development
Is the NCHD Changeover Associated with Increased Risk of Intravenous Catheter Related Infections?

Sir,

Both central venous catheters (CVCs) and peripheral intravenous cannulas (PVCs) have changed the management of patient care in a hospital setting. However there is a significant risk of local and/or bloodstream infection with both.\(^1,2\) Indeed, every day the catheters remain in place increases the chances of developing a related blood stream infection.\(^3\) Healthcare associated infections (HCAIs) lead to increased morbidity and mortality, increased length of hospital stay and costs.\(^4\) HCAIs are an important indicator of quality of care. Our hypothesis was that the non consultant hospital doctor changeover at the beginning of July may be associated with some impact on these quality indicators. The primary aim of this study was to monitor the rates of CVC associated infections in a 649 bed teaching hospital for twenty days before and after the changeover. Secondary aims included monitoring of PVC related adverse events and blood culture contamination rates before and after the changeover.

Daily surveillance of all patients with CVCs in place was carried out on all long stay wards in the main hospital for the forty days of the study. All CVCs were inserted by senior medical staff in the radiology department. The same was performed for PVCs on a pre-selected medical and surgical ward for twenty four days. The blood culture data was collected retrospectively from the microbiology laboratory computer system. The total number of CVC line days was 549 before the changeover and 681 afterward. The number of central catheter associated bloodstream infections per 1000 line days before and after the changeover was 10.9 and 1.5 respectively (p<0.05, Fishers exact test). All of these infections were seen in haematology (5) and oncology (2) patients and were associated with Hickman lines (4), portacaths (2) and Peripherally Inserted Central Catheter lines (1). Adverse events, associated with peripheral cannulas, per 1000 line days on the medical ward, were 15.3 and 26.79 before and after the changeover respectively (p=0.67, Fishers exact test). It is difficult to compare this to international figures as there is little data for similar institutions in the literature.

Overall a trend exists towards increased levels of adverse events associated with PVCs and contamination of blood cultures. Whilst not reaching statistical significance, these suggestions support our hypothesis. However, the reduction in infections associated with CVCs contradicts our initial hypothesis. This may very well be a chance finding or may reflect greater adherence to recommended procedures following induction training and or may even be due to surveillance being carried out. The study was unfortunately very limited by its numbers as it was conducted at a single site however the issue may merit more comprehensive multi-site study in the future as there is growing recognition of the need for quality assurance systems in health care and major personnel changes represent a risk to quality for any service provider.

B Craven
Clinical Science Institute, Costello Road, Galway
Email: brianjcraven@gmail.com

References
Cancer incidence and mortality due to alcohol: an analysis of 10-year data: Laffoy et al have calculated that the increased incidence of cancer associated with alcohol ingestion. The susceptible cancers are oral, upper GI, lower GI, liver breast and pancreas. Between 2001-10 a total of 4585 male and 4594 female cancers were attributable to alcohol. They state that over half of the alcohol related cancers are preventable by adhering to the alcohol consumption guidelines.

Are Irish adult general practice consultation rates as low as official records suggest? A cross sectional study at six general practices: Behan et al have analysed the frequency of GP visits among 20,706 adult patients across 6 practices. The yearly overall consultation rates was 5.17 visits per year-GMS 7.7 and private 3.35. The authors calculate that a free GP service would increase GP workload by 4.4 million consultations annually.

Adverse event recording post hip fracture surgery: Doody et al report on the adverse event rate among 39 patients after a hip fracture. They used a standardised form to record adverse events and classified the complications according to the degree of severity. Among the 32 female patients there were 24 complications and among the 7 male patients there were 4 with complications. Common problems included anaemia, urinary retention, pneumonia, delirium and constipation.

A national house-staff audit of medical prophylaxis in medical patients for the prevention of venous thromboembolism (prevent-vte): Adamali et al audited the administration of DVT prophylaxis before and after the placing of reminder stickers in the notes of patients deemed at risk of DVT. The intervention had no impact. Among the ‘before’ patients 29.7% received prophylaxis and in the ‘after’ patients 27.1% were prescribed prophylaxis. The reluctance to prescribe LMWH may be due to fears of causing a bleed in elderly frail patients. More teaching and training is needed.

The changing epidemiology of the bronchiolitis epidemic in Tallaght hospital: O’Connor et al have examined the changing pattern of bronchiolitis. There has been a shift in the timing and incidence of bronchiolitis over the last 2 years. A total of 1202 bronchiolitis admissions were included. There was a 102% increase in cases in the first 6 months of 2011 and 2012.

Safety comes first: are doctors attentive enough to their initial clinical assessment notes: Daly et al assessed the quality of written medical clinical notes. A total of 154 active medical records were selected. A data collection sheet with variables reflecting relevant fields was designed. A number of deficiencies were identified including the patient’s medications, allergy status and an objective record of the doctor’s own identity. The authors recommend the introduction of a standard template.
49th Doolin Lecture: AE (Freddy) Wood: The Patient, the Surgeon and the Regulator: 7th Dec 2013

This year’s Doolin lecture was delivered by Freddy Wood cardiothoracic surgeon and incoming President of The Medical Council. Wood described his career from entering medicine in 1965 and his subsequent journey through a long and illustrious career in surgery. His apprenticeship is daunting for those who follow in his footsteps. It consisted of 40,000 hours on call, 8,000 hours operating and 7,500 hours in clinical care and education. He highlights the current challenge of training competent surgeons within 6 years while conforming to the 48 hour EU directive. Training will need to become more intense with greater concentration of surgical services. The current model with 47 hospitals nationally will need to be addressed.

The long hours of duty did have some compensations. If one worked hard and got all the ward duties completed you may be invited to share night time supper with the nurses in their kitchen. This was a real treat for a young male doctor. Many St Vincents Hospital romances blossomed in this setting.

Wood’s training across many hospitals and countries will be familiar to most consultants who qualified from that era. Junior posts in Ireland were ad hoc appointments and there was no training scheme. Once registrar grade level was attained the doctors packed their bags and dragged their wives and young children with them to work in hospitals outside Ireland. Like many others he was told that there wouldn’t be any job for him in Ireland. However he persevered and initially worked in Belfast and subsequently went to Toronto. He vividly remembers Belfast in 1977. It was like a fortress and one simply went from home to work but the chest trauma experience was invaluable. Toronto was an enlightenment. In 1979 the Sick Children’s Hospital was performing 800 cardiac operations annually and was at the forefront of pioneering surgical techniques.

Wood outlined the major developments that have taken place in Irish cardiothoracic surgery. The fundamental turning point was in 1969 when a group of cardiothoracic surgeons approached the Minister of Health and persuaded him to centralise open heart surgery. At the time 7 hospitals were doing heart surgery with variable results. After intense negotiations it was agreed in 1971 to establish a National Cardiac Surgery Unit at the Mater hospital under Maurice Nelligan. The benefits of this enlightened decision have been sustained over the last 43 years.

The specialty developed rapidly with the advent of the heart lung bypass machine which greatly facilitated the application of open heart surgery. The original device required 54 units of blood for priming and necessitated a large group donation from the soldiers’ barracks. Subsequent models only needed 2 units. Transposition of the great vessels (TGA) and coarctation of the aorta were two of the major challenges facing paediatric cardiac surgery. Atrial redirection of TGA was introduced in Dublin in 1979 by Maurice Nelligan. Wood returned to Dublin around 1984. By 1985 there were 850 cardiac operations annually in the Mater and 220 operations in Crumlin. Subsequently the more effective but technically challenging switch operation for TGA’s was introduced.

The next major advance was the development of heart transplant surgery in Ireland. After the concept was floated in 1984 there was an 18 month intense period of fund raising and medical/nurse training at Harrowfield Hospital. On 10th September 1985 a donor became available in Wexford General Hospital. Wood and Roisin MacSullivan, Anaesthetist flew down and collected the heart donation and brought it back to the Mater. The recipient was Eddie Kelly who survived the procedure. The successful transplant was reported in the Irish Times the following day. Subsequently between 1985 and 1994 there were 100 heart transplants the 30 day survival being 85% and the 5 year survival being 75%. The average life expectancy of a heart transplant recipient is 14 years. The publicity surrounding the transplant programme had unintended consequences in that Wood and Nelligan were instructed by the Medical Council to maintain a low profile. The source and reason for the complaint was never made known to them.

The Department of Health Cardiovascular Strategy in 1999 had a major impact. It provided an impetus for the development of cardiac and cardiovascular services. Crumlin became an increasingly busy centre for paediatric cardiac surgery and is the fourth largest centre in the UK and Ireland. In 1992 the National Homograft Valve Bank was established. The valves can be preserved for 5 years. When placed in a recipient they can last for 15-20 years, have reduced risk of infection and avoid the need for anticoagulation. In 2006 the artificial heart programme was introduced. Also around this time ECMO was established for cardiac cases in adults and children. The first lung transplant was undertaken in 2005 and to date 80 patients have received transplants.

He raised the issue of medical regulation and emphasised the significance of the 2007 new medical practitioners’ act. He gives two descriptions of a good doctor. The first is one who cures sometimes, relieves often and cares always. The second is a physician who is able, affable and available. There is a dichotomy in that although 90% of the public trust doctors, Ireland has a high malpractice rate second only to Florida.

Finally, in 2012 the exit rate for Irish doctors per age group was: 25-29 years (6.4%), 30-34 years (6.3%), 35-39 years (6.1%), 40-59 years (21.1%), 60-64 years (6.4%). Retention of medical staff has now become a major challenge. The other is the equipoise between management and the medical profession. The command control model remains in existence.

JFA Murphy
Editor
Towards Realistic and Flexible Advance Care Planning

The suffering of the many Irish people who bought houses at the height of the economic boom with variable mortgages is a topical and telling demonstration of the difficulties of planning for the future. What seemed like a good idea in 2006 has become a millstone around many necks, putting huge strains on marriages and family life, and is deservedly a topic of national debate. Signing into a binding written commitment for their financial future has been a bitter experience for this large group of people: how much more painful might it be if they had signed into unhappy binding agreements about their future healthcare? The illusion that the future healthcare can be tightly defined is typified by the case for advance directives, an idea for which enthusiasm has unhappily out-stripped an increasingly critical biomedical literature. This ranges from their description by the majority of ICU staff in one US study as ‘useless’ to clear problems which arise when advance directives are patently in conflict with the patient’s best interests.

A number of criticisms can be levelled at most forms of proposed advance care directives currently available in Ireland – the most prominent of which is Think Ahead www.thinkahead.ie, in part funded by Atlantic Philanthropies - as well as the recommendations of the Irish Law Reform Commission. They are generally negative in nature, focussing on non-treatment rather than treatment, and offer an impoverished pallette of responses to the demands of late-life complexity. A further major concern is the extent to which they may consciously or unconsciously reflect widespread ageism and prejudice against disability, a trend magnified by underprovision of gerontological nursing skills in many settings. This was illustrated in an RTE documentary in 2009 which prefaced a discussion on end-of-life care with a video of a man with Parkinson’s apparently aspirating on regurgitated feed from a gastrostomy tube. To any trained clinicians watching, the problem was a care issue in that he was being fed while recumbent – which hugely increases the risk of aspiration - and not necessarily that of the ethics of life support and disability, a point completely missed by the panel on the programme.

Combating negativity about life with dementia and disability remains challenging, despite ground-breaking conceptual, ethical and empirical study on preserved personhood and quality of life in dementia. Research on personal growth in disability, as well as the remarkable testimony of the Irish film-maker Simon Fitzmaurice’s struggle to ensure that he would be ventilated with his motor neuron disease should instil caution on those who might consider eschewing life-support in advance planning for a possible future disabling illness. This is especially relevant given the emotive video on the Think Ahead website whereby a relatively young fireman expresses a wish not to be on life support if there is ‘no way back’.

Older people themselves understand that late life is also a time marked by complexity, increased inter-individual variability and unpredictability, and defer advance care planning to a time when the reality of illness and disability are salient, as displayed by a study from the first Irish longitudinal study on ageing. In the USA, it is a striking that many avoid engaging with advance directives in settings where the law mandates that they should be offered the opportunity to make one. For those that do make an advance directive, frequent changes are common, and it is clear that patients do not desire a stark dichotomy between life-sustaining treatment and hospice care. In addition, the heterogeneity of possible outcomes means that the methodology of assisted decision-making is less helpful, unlike more specific decisions such as the use of respite care.

So given that some form of advance care planning is clearly desirable at certain stages of health care, what form of mechanisms might we put in place, building on the encouraging finding that Irish doctors consult appropriately with patients and their families when altering treatment intensity at the end of life. Such care should be planned at a point where the patient has some experience and knowledge of the likely conditions. The plan should be developed with a healthcare professional who has in-depth knowledge of the relevant conditions. It should be possible to request positive, pro-active care as well as treatment refusal. For example, given that the most likely scenario for impaired decision-making capacity in clinical practice arises from the two key illnesses of later life, dementia and stroke, specifying that those looking after the patient would have specific training in gerontology and dementia care would be reasonable.

In this way, so that the patient’s wishes can be interpreted in a sensitive fashion for as long as possible and flexible advance care preferences constructed that can adapt to changing circumstances and new therapeutic and palliative advances. Rather than binding my healthcare providers into an out-dated view of a fast-changing medical landscape, the plan should be phrased in terms of advanced care preferences with a strong moral force rather than a legally binding directive. This approach is supported by studies which show that in general patients trust their doctors to do the right thing.

The impending Irish legislation on mental capacity promotes the concept of co-decision-maker. This is a more useful concept than that of health-care proxy, a subtle but important emphasis on assisted decision-making, extending autonomy. Even in late dementia, a patient may make preferences clear by pulling out a tube or line, or by insisting in drinking despite a swallowing disorder which means that liquids may spill into the lungs: what is most important is that the care staff know how to interpret and support these decisions. Bertrand et al. state that certainty is one which is natural to man, but is nevertheless an intellectual vice. There is an urgent need for Irish clinicians to inject clinical reality and relevant research into the national debate on advance care planning so as to develop new models which avoid early foreclosure on options for a full palette of care at the end of life.

D O’Neill
Centre for Ageing, Humanitics and the Neurosciences, Tallaght Hospital, Dublin 24
Email: donnell@ctcd.ie

References
Cancer Incidence and Mortality due to Alcohol: An Analysis of 10-Year Data

M Laffoy1, T Mc Carthy1, L Mullen1, D Byrne2, J Martin3
1National Cancer Control Programme, HSE, Parnell St, Dublin 1
2University of Oxford
3Department of Public Health, Dr Steeven’s Hospital, HSE, Dublin 8

Abstract
Alcohol consumption is causally related to cancer of the upper aero-digestive tract, liver, colon, rectum, female breast and pancreas. The dose response relationship varies for each site. We calculated Ireland’s cancer incidence and mortality attributable to alcohol over a 10-year period. Between 2001 and 2010, 4,585 (4.7%) male and 4,593 (4.2%) female invasive cancer diagnoses were attributable to alcohol. The greatest risk was for the upper aero-digestive tract where 2,961 (52.9%) of these cancers in males and 866 (35.2%) in females were attributable to alcohol. Between 2001 and 2010, 2,823 (6.7%) of male cancer deaths and 1,700 (4.6%) of female cancer deaths were attributable to alcohol. Every year approximately 900 new cancers and 500 cancer deaths are attributable to alcohol. Alcohol is a major cause of cancer after smoking, obesity and physical inactivity. Public awareness of risk must improve. Over half of alcohol related cancers are preventable by adhering to Department of Health alcohol consumption guidelines.

Introduction
Alcohol consumption causes 3.8% of global mortality. Europe and America have the highest death rates, 6.5% and 5.6% respectively1. The main causes of alcohol related death in European men are cirrhosis (26%), unintentional injury (23%) and cancer (17%). In European women, the main causes of alcohol related death are cirrhosis (37%) and cancer (31%)2. In Ireland the proportion of alcohol related deaths from cancer is higher than the European average, 20.7% for men and 38.8% for women3. Cancer incidence due to alcohol was quantified for eight European counties (but not Ireland) as part of the EPIC study4. This found 10% of male and 3% of female cancer incidence is attributable to current or former alcohol consumption.

There is a proven link between alcohol consumption and cancer of the upper aero-digestive tract (lip, oral cavity, pharynx, larynx, oesophagus), liver, colon, rectum and female breast, with a small statistically significant increased risk for pancreatic cancer with high intake5,6. There is no threshold below which there is no increased cancer risk. The strength of the relationship varies for different sites. The relationship between alcohol consumption and cancer of the upper aero-digestive tract is greatest, with more than a doubling in risk from an average consumption of 50g of pure alcohol per day2. For female breast cancer each additional 10g of pure alcohol per day is associated with a 7% increase in relative risk7. For colorectal cancer, consumption of 50g per day increases the risk by 10-20%8. The molecular mechanisms for alcohol-associated carcinogenesis focus on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and co-morbidities, and depends on genetic susceptibility9,10.

The volume of alcohol consumed in Ireland increased dramatically over the past 50 years. In 1963 average consumption of pure alcohol was 6.2 litres per adult per year. In 2002 consumption reached a peak at 14.2 litres (compared with a European average of 9.1 litres and a global average of 6.1 litres at that time). In 2010 Ireland’s consumption reduced to 11.9 litres11. While this is now more in line with the European average, it remains a concern especially as one in five in Ireland is an abstainer12. The objective of this study is to calculate the proportion of cancer incidence and cancer mortality in Ireland that was due to alcohol consumption over the ten year period, 2001 to 2010.

Methods
The alcohol attributable fraction (AAF) is used to estimate the proportion of a condition that is causally related to alcohol. The cancer AAF is a function of population age-specific prevalence (P) of alcohol consumption and relative risk (RR) estimates of acquiring a specific alcohol-related cancer, using the formula in Figure 1. AAFs can be applied to national population data on incidence and mortality to determine the number of new cancers and cancer deaths, for a defined time-period, that are causally related to alcohol consumption. Previous research calculated AAFs for all alcohol-related mortality in Ireland3. These researchers used alcohol consumption data from the Survey of Lifestyles, Attitudes and Nutrition (SLAN) in 200712 and adjusted it upwards to account for the underestimation by self-reporting. We used their adjusted prevalence data in this study and their consumption categories i.e. abstainer (the reference category),
low risk, risky and high risk. Consumption is recorded in grams per day.

A literature review of meta-analyses/systematic reviews identified RRs of specific cancers that are causally related to alcohol. These RRs were applied to the SLAN categorical variables of alcohol consumption in Ireland, Table 1. We obtained national cancer incidence and mortality data, for cancers known to have a causal relationship with alcohol consumption, for the 10 year period 2001-2010. Cancer incidence data were obtained from the National Cancer Registry of Ireland. Cancer mortality data were obtained from the Central Statistics Office. The derived AAFs for each cancer by 5-year age group, for males and females, were collated with cancer incidence and mortality data to determine the number of alcohol attributable cancers in each age group. The total number of new cancer cases and deaths between 2001 and 2010 attributable to alcohol was then calculated, as were the overall proportions attributable to alcohol.

Results
Table 2 shows total 10-year cancer incidence in sites known to be impacted by alcohol and the number (%) calculated as being attributable to alcohol. Table 3 provides the results for cancer mortality attributable to alcohol.

Incidence
Between 2001 and 2010, there were 21,371 invasive cancers diagnosed in men in sites where alcohol is known to play a causative role; 4,585 were attributed to alcohol i.e. 21.5% of all cancers in these specific sites and 4.7% of all invasive male cancers.

Table 2 Ten year total cancer incidence and alcohol attributable cancer incidence in specific sites, 2001-2010 (ICRi)

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>10 year cancer incidence</th>
<th>10 year cancer incidence attributable to alcohol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lip, Oral Cavity, Pharynx</td>
<td>2135</td>
<td>1271 (59.2)</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>2278</td>
<td>1158 (50.9)</td>
</tr>
<tr>
<td>Larynx</td>
<td>131</td>
<td>862 (67.3)</td>
</tr>
<tr>
<td>Colon</td>
<td>7478</td>
<td>452 (60)</td>
</tr>
<tr>
<td>Rectum</td>
<td>5143</td>
<td>587 (11.4)</td>
</tr>
<tr>
<td>Liver</td>
<td>933</td>
<td>442 (44.5)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2558</td>
<td>143 (5.6)</td>
</tr>
<tr>
<td>Total</td>
<td>21371</td>
<td>4585</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lip, Oral Cavity, Pharynx</td>
<td>977</td>
<td>335 (34.3)</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>1278</td>
<td>439 (34.4)</td>
</tr>
<tr>
<td>Larynx</td>
<td>205</td>
<td>92 (44.9)</td>
</tr>
<tr>
<td>Colon</td>
<td>6486</td>
<td>235 (3.6)</td>
</tr>
<tr>
<td>Rectum</td>
<td>2952</td>
<td>208 (7.0)</td>
</tr>
<tr>
<td>Liver</td>
<td>532</td>
<td>163 (30.6)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2130</td>
<td>63 (30)</td>
</tr>
<tr>
<td>Breast</td>
<td>24995</td>
<td>3056 (12.2)</td>
</tr>
<tr>
<td>Total</td>
<td>39555</td>
<td>4593</td>
</tr>
</tbody>
</table>

Discussion
Alcohol is a group 1 carcinogen. It is one of the most important causes of cancer after tobacco smoking, obesity and physical inactivity. Yet, the public is not generally aware of the risk of cancer from alcohol. Though the overall risk of cancer from alcohol is low, this study shows that, every year in Ireland approximately 5% of newly diagnosed cancers and cancer deaths are attributed to alcohol i.e. a yearly average of 917 new cases and 452 deaths between 2001 and 2010. This is similar to international findings, with regional differences reflecting variations in alcohol consumption. The greatest risk is to the upper aero-digestive tract where it explains over 50% of these cancers in men and over one-third in women in Ireland. The risk of cancer in the upper aero-digestive tract is strongly related to the amount of alcohol consumed. Furthermore, alcohol consumption together with tobacco smoking can explain 75% of these cancers, as alcohol and tobacco act synergistically. Therefore the majority of cancers of the upper aero-digestive tract cancers are attributable to alcohol i.e. 11.6% of all the cancers in these specific sites and 4.2% of all female invasive cancers.
aero-digestive tract could be avoided by not smoking and moderating alcohol use. Just 12.2% of breast cancers were attributable to alcohol but most (67%) of all the female cancers attributable to alcohol were breast cancers. This is simply because breast cancer is a common disease. Other research world-wide concurs that 60% of female cancers attributable to alcohol occur in the breast. While the impact on breast cancer is modest in percentage terms, it is important at a population level. It is important that women who are at higher risk of breast cancer have information on the additional risk from alcohol. In relation to liver cancer, the EPIC study found that the average proportion of liver cancer incidence due to alcohol in eight European countries, was 33% for men and 18% for women. The corresponding figure for Ireland was higher at 44.5% for men and 30.6% for women. It is also notable that between 2001 and 2010 recorded liver cancer mortality was higher than liver cancer incidence and the variation was greater in women. One possible hypothesis is that some deaths from ‘metastatic liver cancer’ may be recorded on death certificates as ‘liver cancer’. This warrants further study.

Department of Health alcohol consumption guidelines are 17 units per week for males and 11 units per week for females. The EPIC study showed that 50% of alcohol-related cancer incidence was due to drinking over recommended limits. However there is no threshold of consumption below which there is no risk. Even small volumes of alcohol consumption, within the recommended consumption limits, have been shown to contribute to breast cancer.

There are some limitations in the derivation and application of attributable risk estimates. Firstly, the AAF is dependent on the accuracy of population alcohol consumption data and on the RRs used in the calculations. We used adjusted consumption data to overcome the issue of underestimation by self-reporting. Using adjusted data is in itself limiting as it assumes a symmetrical distribution across consumption categories. Relative risk estimates in the epidemiological literature vary between different meta-analyses but are broadly similar. Confidence limits associated with these RRs need to be borne in mind but as with other calculations of AAFs, we have not developed methodology to provide confidence intervals for each AAF. Therefore there is some uncertainty surrounding the estimate presented. Secondy, the interpretation of attributable risk should be approached with caution, particularly in relation to a multifactorial disease such as cancer. Removal of exposure does not reduce risk to zero in the individual or the population, given the existence of other significant risk factors. However, it can be used to estimate the potential reduction in an individual’s risk of a particular cancer, or indeed the burden of disease that could be prevented in the population. Finally there is a long lag-time between consumption of alcohol and eventual onset of or death from cancer. As such, the burden of cancer from 2001-2010 more accurately reflects patterns of alcohol consumption in the 1980s and 1990s.

A public and health professional information campaign is needed to highlight the risk of alcohol on cancer. This should reinforce that drinking within Department of Health guidelines could prevent half of alcohol-related cancers. It should highlight the huge risk of upper aero-digestive cancer from alcohol and the synergistic impact of smoking. Women need to know about the risk of breast cancer from even low levels of consumption so that they can make an informed choice about their alcohol consumption.

Correspondence: M Laffoy
National Cancer Control Programme, 100 Parnell Street, Dublin 1

Acknowledgements
S Dredge, National Cancer Registry for providing cancer incidence data and A Cahill and G Cosgrave, Department of Health, for data on cancer mortality. Our thanks to D Carey, HSE for statistical advice.

References
Are Irish Adult General Practice Consultation Rates as Low as Official Records Suggest? A Cross Sectional Study at Six General Practices

W Behan1,2, D Molony3,4,5, C Beame6, W Cullen4
1Walkinstown Primary Care Centre, Dublin 12
2UCD School of Medicine & Medical Science, Belfield, Dublin 4
3Mallow Primary HealthCare Centre, Mallow, Co Cork
4Graduate Entry Medical School, University of Limerick
5UCC School of Medicine
6CompleteGP, Mallow, Co Cork

Abstract
Accurate data on primary care activity is key to health services planning and reconfiguration. Official data estimate general practice adult consultation rates to be 3.2 visits annually, based on patient self reports. We aim to estimate the consultation rate using practice based data and compare this to official estimates. We interrogated six general practices’ information systems and estimated consultation rates based on practice, telephone, domiciliary and out of hours consultations by patients aged 18 years or older. The study population (20,706 patients) was representative of the national population in terms of age and GMS status. The mean consultation rate was 5.17, though this was higher among GMS-eligible patients and among older age groups. Estimates of consultation rates derived from practice based data are likely to be higher than that derived from other approaches. Using multiple sources of data will enhance accuracy of workload estimates and this will benefit service planning.

Introduction
General practice and primary care are key to the reconfiguration of health services in Ireland. Accurate data on workload, morbidity and health service utilisation is necessary. Though official data estimated Irish general practice consultation rates to be 3.2 visits annually in 2010 (2.8 visits in 2007), this estimate is based on patient self reports alone and does not consider data contained in general practice based information systems. There is an increasing recognition that such health information systems have key role in this respect. This paper aims to estimate the consultation rate at a sample of Irish general practices using general practice information systems.

The method of funding Irish general practice is unique by international comparisons. Forty-three per cent of the population access free GP care through Ireland’s General Medical Services (GMS) scheme1. Irish GPs, with a few exceptions, are paid a ‘capitation fee’ according to the patient’s age and sex to provide 24 hour care for these patients2. ‘Full’ GMS eligibility is determined predominantly on the basis of low income with patients aged 70 and older being allowed a much higher income threshold. About 6% GMS cards are ‘GP Visit Cards’ (GVPVs) which allow patients free access to their GP without the benefit of free medications and access to the other community services. The GVPV is granted on the basis of the medical card income threshold plus 50% after certain living expenses are taken into account. In addition, a small proportion of the population are granted discretionary medical cards on the basis of experiencing ‘undue hardship’. Therefore 57% of the population pay for general practice care though may be entitled to recoup a portion, depending on the extent of private health insurance. All GMS patients are registered with a GP. There is no national patient identifier and also no mandatory registration for private patients. The average adult standard consultation fee was €51 in 20103.

Official Irish adult patient GP Consultation rates are derived from the 2007 and 2010 National Quarterly Household Survey (NQHS)4,5. These estimates are based on recollection of consultations by patients over the previous 12 months which is at odds with the methodology used by ‘European Health Interview Survey’ which asked interviewees to report their doctor visits during the previous four weeks6. The 2007 and 2010 CSO survey methodology produces much lower attendance rates than several other estimates of consultation rate, including: CSO 2001 data which was based on recollection of consultations over the previous two weeks7; ‘Fee-per-item’ contract GP attendance rates based on administrative records and published annually by Ireland’s ‘Primary Care Reimbursement Service’2,8 -11; and ‘ORESEARCH’ audit of 4.3 million patients involving 21.7 million clinical consultations in the UK12. In addition, these recent reports estimating GP consultation rate imply that consultation rates among GMS-eligible patients are similar for both younger and older patients which is again at odds with national and international evidence12-24. Therefore this paper aims to determine if General Practice consultation rates among Irish adults are as low suggested by this recent official data. A secondary objective was to explore if age and GMS status affect consultation rates.

Methods
We estimated annual adult consultation rates at six general practices, purposefully selected based on interest in the topic under study and to be reflective of General Practice in Ireland15. Participating practices had a full complement of nursing and administrative staff and were located in all four of Ireland’s Health Service Executive (HSE) regions. Characteristics of participating practices (i.e. location, staffing, local area deprivation and practice demographics) are described in Table 1. The study period was the 12 months from 23/10/12 to 22/10/13. We adopted the same definition of consultation as that used by the ‘ORESEARCH’ audit of clinical consultations in the UK23 and the CSO NQHS, i.e. ‘direct contact between a clinician and patient either in the surgery, in the patients’ house or on the telephone’. Telephone...
contacts involving discussion of results, request for notes or a prescription were not considered as consultations. Clinic contacts at all six participating practices registered for inclusion as a consultation when a patient appointment coincided with a consultation note in the same patient’s record on the same day. Estimates of out of hours contacts and telephone consultations were based on records maintained at one practice and this figure was extrapolated to all six practices.

Calculation of the number of GMS patients was taken from each practice’s GMS list on the 01/04/2013. We estimated the number of ‘private’ patients in each practice from the number of unique private patient attendances during the 12 month study period and dividing by 0.7 (derived from 2010 CSO NHHS data which estimated that 70% of non-GMS patients attended their GP in the previous 12 months). Data at each practice was collected by a GP Principal at that practice, anonymised and only anonymised, aggregate data was reviewed / analysed by the principal investigator (WB).

Results

At participating practices, there was a total combined patient population of 27,080 in the six practices of whom 20,706 were aged 18 years or older. Whole time equivalent staff was estimated as 16.75 GPs, three GP registrars, nine practice nurses and 16 administrative staff. Characteristics of the study population were comparable to both Ireland’s national population and the national population of GMS-eligible patients (see Figure 1).

11,428 (42% of total population) were GMS-eligible, which is comparable to the national reports. We estimated the total population of ‘private patients to be 15,652. Of the GMS eligible population, 19.6% was aged over 69 which is similar to national population. 10.1% of the total population (including children) were aged over 69 year olds which is a slightly higher percentage of over 69 year olds than the national population proportion of 8.2% according to the 2013 CSO projections. 29.5% of our population were under the age of 18 years old compared to 25.5% of the national population. The consultation rate among all adult patients was 5.17; 7.72 among GMS-eligible patients and 3.35 among ‘private’ patients. GMS patients under the age of 70 attended 701 times per annum and those older attended 9.69 times per annum.

Almost all patients who had GPwCs or ‘Discretionary’ GMS cards were aged under ‘70. Consultation rate among patients with ‘Discretionary’ GMS cards was 8.11; this was higher than the consultation rate among all GMS patients aged under ‘70(701) and patients with GPwCs (6.06). Compared to the 2007 and 2010 CSO surveys, the consultation rates we observed were higher among all age groups and medical card status. Older patients exhibit an increasing attendance rate, which would not be obvious in the CSO data (see Table 2).

Discussion

This cross sectional study of 20,706 adult patients at six general practices estimates a mean annual consultation rate of 5.17 in Irish general practice, with higher rates observed among GMS-eligible and older patients. Our findings suggest consultation rates in Irish general practice are higher than that estimated using other approaches, especially the 2007 and 2010 CSO data. Other approaches that involve asking patients to report the number of visits over a longer time period is likely to under-estimate activity. That there was little variance between our findings and the 2007 and 2010 CSO data involves older, GMS-eligible patients – the groups with higher consultation rates. While the reasons for this are complex, relying on patients to report the number of visits over a longer time period is likely to under-estimate activity. That there was little variance between our study and the 2001 CSO data, in which patients were asked to report their medical contacts over the previous two weeks, would support this hypothesis.

The introduction of free primary care, by expansion and

Table 1 Characteristics of participating practices

<table>
<thead>
<tr>
<th>Practice</th>
<th>Total</th>
<th>GP</th>
<th>GP Registrar</th>
<th>Nurse</th>
<th>Admin- strator</th>
<th>Catch- ment Area</th>
<th>% Over 70s</th>
<th>Affluence of population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16,75</td>
<td>3</td>
<td>9</td>
<td>16</td>
<td>40, 84</td>
<td>Mix with bias towards average affluence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>43, 94</td>
<td>Mix with bias towards average affluence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0, 52, 2</td>
<td>Inner city</td>
<td>53, 10, 12</td>
<td>Predominantly deprived population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2,5</td>
<td>0</td>
<td>0, 75, 1,25</td>
<td>Rural</td>
<td>59, 14, 2</td>
<td>Marginal below average affluence/disadvantaged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>1</td>
<td>1, 15</td>
<td>Rural</td>
<td>40, 71</td>
<td>Mix with bias towards above average affluence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,25</td>
<td>0</td>
<td>1, 2, 23, 5</td>
<td>City suburb</td>
<td>32, 15, 1</td>
<td>Mix with bias towards above average affluence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>16</td>
<td>42, 10, 1</td>
<td>Mix with bias towards average affluence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Key study findings and how they compare with consultation rates estimated elsewhere

<table>
<thead>
<tr>
<th>GP ATTENDANCE RATES (Adults)</th>
<th>2013 Local Audit GMS</th>
<th>2001 CSO GMS</th>
<th>2007 CSO GMS</th>
<th>2010 CSO GMS</th>
<th>Ave. 2007-2011 Fee-per-item</th>
<th>HSE QRESEARCH 2010 Dept of GP NUI Galway</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL PATIENTS</td>
<td>5.17</td>
<td>5</td>
<td>2.9</td>
<td>3.2</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>ALL UNDER 70</td>
<td>4.54</td>
<td>2.6</td>
<td>2.9</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>ALL OVER 70</td>
<td>8.56</td>
<td>5.2</td>
<td>5.4</td>
<td>10.8</td>
<td>8.74</td>
<td>8.74</td>
</tr>
<tr>
<td>GMS</td>
<td>7.72</td>
<td>8.0</td>
<td>5.3</td>
<td>5.2</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>GMS Discretionary</td>
<td>8.11</td>
<td></td>
<td></td>
<td></td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>GMS DVC</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>PRIVATE only</td>
<td>3.35</td>
<td>3.46</td>
<td>2.2</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>GMS UNDER 70s</td>
<td>7.01</td>
<td></td>
<td>5.3</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>GMS OVER 70s</td>
<td>9.69</td>
<td></td>
<td>5.3</td>
<td>5.6</td>
<td>5.6</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Figure 1 Study population compared to national population, GMS-eligible population

Figure 2 Consultation rate by age group and comparison with other literature
reconfiguration of the GMS system and the introduction of universal health insurance is a stated policy objective in Ireland\(^1\). Our findings suggest this policy will have considerable workload implications. Previous research in Ireland indicated that when older patients become eligible for free primary care / GMS services, they are exposed to more screening and general practice activity even after controlling for a variety of individual and household socio-economic and health status characteristics\(^2\). Furthermore, Nolan recently estimated 1.5-1.8 additional GP visits per person would result from the introduction of universal primary care an estimate that is consistent with our findings\(^3\).

Extrapolating our findings to a national population of 4.59 million (2013 CSO), suggests approximately 24 million consultations occur in general practice annually (15.4 million GMS consultations and 8.8 million private consultations). Were private patients to attend at the same rate as GPVC patients, then one might anticipate an increase in general practice workload of 4.4 million consultations per year, which is well in excess of the figures currently used in planning of Universal Primary Care\(^4\). The planned introduction of a national chronic disease management program would further inflate this figure.

While our study population is large and reflective of the national population in terms of urban/rural location and deprivation, we acknowledge a number of potential sources of bias. These include, that only six practices were involved and a marginally higher proportion of patients aged over 69 years compared to the national population. In addition, it is unlikely that all surgery consultations were included as more than one patient may have been seen during a single consultation and urgent consultations may not have been documented. We extrapolated the telephone and out of hours consultation rate (calculated directly from practice management software or returns from the deputising service) from one practice to all six practices. It should be noted that the calculated ‘out of hours’ consultation rate for this practice was 0.2 per GMS patient; lower than what one would expect from national data of 804,670 out of hours GMS payments in 2011 for a total population of 1,819,720 GMS patients.

It is generally accepted that general practice and primary care are key to the reconfiguration of health services in Ireland in order to provide a more responsive, cost effective health service. Accurate data on workload, morbidity and health service utilisation is necessary to reliably inform these changes. Current official data, which is produced by survey and does not consider data contained in general practice based information systems, appears to greatly under-reflect workload in general practice, both current and future. Significant changes in national health policy should only be made if the data supporting the transformation is both reliable and convincing. Utilising current official data to plan future work-load will lead to very unpredictable results.

Acknowledgements

Colleagues at the six participating practices who collected data for this study and staff at Walkinstown Primary Care Centre for their support and help with the project. Data analysis and manuscript drafting was assisted by the Graduate Entry Medical School at University of Limerick.

Correspondence: W Behan
Walkinstown Primary Care Centre, 115 Cromwellfort Road, Dublin 12
Email: wbehan@eircom.net

References

Adverse Event Recording Post Hip Fracture Surgery

K Doody1,2, KMS Mohamed1, A Butler1, J Street1, B Lenehan1,2
1Graduate Entry Medical School, University of Limerick
2Department of Orthopaedics, University Hospital Limerick, Dooradoyle, Co Limerick
3Department of Orthopaedics, University of British Columbia, Vancouver, Canada

Abstract
Accurate recording of adverse events post hip fracture surgery is vital for planning and allocating resources. The purpose of this study was to compare adverse events recorded prospectively at point of care with adverse recorded by the Hospital In-Patient Enquiry (HIPE) System. The study examined a two month period from August to September 2011 at University Hospital Limerick. Out of a sample size of 39, there were 7 males (17.9%) and 32 females (82.1%) with an age range of between 53 and 98 years. The mean age was 80.5 years. 55 adverse events were recorded, in contrast to the HIPE record of 13 (23.6%) adverse events. The most common complications included constipation 10 (18.2%), anaemia 8 (14.5%), urinary retention 8 (14.5%), pneumonia 5 (9.1%) and delirium 5 (9.1%). Of the female cohort, 24 (68.8%) suffered an adverse event, while only 4 (57%) males suffered an adverse event.

Introduction
The number of hip fractures occurring each year is increasing primarily due to the ageing demographics of the population. In Ireland it is predicted that between 2008 and 2026 the number of hip fractures occurring will increase by 100%. This will inevitably lead to a larger burden on health service providers. Hip fractures are a major cause of morbidity and mortality in the elderly population. One third of patients may be unable to regain their ability to live independently after a hip fracture. Given the ages and other co-morbidities of these patients, they are at a significant risk of developing general complications common to any major surgery. It is vital that these adverse events are accurately recorded so adequate resources can be allocated for the management of hip fractures. There are large inconsistencies in the rates of adverse events post hip surgery as recorded by different entities. The reasons for this include differences in adverse event definition, the data not being accurately recorded and reporting bias. Much of the information we have on patient complication rates is dependent on administration abstraction method. This means that the validity of adverse event recording is dependent on accurate interpretation of clinical records by non-medical staff.

The purpose of this study is to assess whether the current administration abstraction method is giving an accurate representation of the number of adverse events occurring in this patient cohort and therefore reflecting the complexity of these patients.

Methods
This study was carried out at University Hospital Limerick, this hospital provides orthopaedic services for a population catchment area of over 360,000 people and serves the counties of Limerick, Clare and Tipperary. There are approximately 300 hip fracture presentations per annum at University Hospital Limerick. All patients admitted with a hip fracture over a two month period from August to September 2011 were included in this study, giving rise to a sample size of 39 patients. Patients were chosen by means of consecutive sampling in order to reduce bias. All adverse events that occurred in these patients were recorded daily on a standardised form by a clinical nurse specialist. It is these adverse events that were compared with adverse events recorded in the Hospital In-Patient Enquiry (HIPE) database for the same patient group. The HIPE database is a national database which was set up and run on a pilot basis in 1969. It is a computer based system which collects demographic, clinical and administration data on discharges and deaths from national hospitals. In Ireland all acute public hospitals participate in HIPE with reporting on greater than 1.3 million records each year. The objectives of HIPE are for the “timely and accurate collection of national hospital activity data”. As HIPE is the only national source we have on morbidity data it is imperative that this information is accurately recorded. Currently the validity of the information stored is dependent on the personnel extracting relevant data from the patients chart in addition to the correct information having been recorded in the chart.

A standardised form was used to record adverse events. An adverse event was defined as “any event (not the underlying disease process or injury) that requires additional monitoring/investigation or treatment during the patient’s acute hospital stay.” This form was adapted from Spine AdVerse Events Severity system, SAVES. The adverse event was graded from 1–6 depending on the severity. Grade 1: Adverse event does not require treatment and has no adverse effect; Grade 2: Adverse event requires non-invasive treatment but has no long term effect; Grade 3: Requires invasive or complex treatment, for example, surgery/ICU admission for monitoring, likely to have a temporary effect on outcome (< 6 months); Grade 4: Requires invasive or complex treatment, likely to have a prolonged adverse effect on outcome (> 6 months); Grade 5: Significant event. Serious life or limb threatening event; Grade 6: Adverse event resulting in death. Additional information recorded included type of surgery, date of surgery, date of complication and type of complication.

Results
In total, there were 39 patients enrolled in the study. There were 7 males (17.9%) and 32 females (82.1%) with an age range of between 53 and 98 years. The mean age of the sample was 80.5 years. The most common operation that took place was a cemented hemiarthroplasty which accounted for 46.2% of all operations. This was followed by dynamic hip screw insertion 28.2%, hemiarthroplasty 12.8%, proximal femoral nail insertion 10.3% and a revision proximal nail insertion according to 2.5% of operations carried out. Please refer to Figure 1, which also illustrates the variations in the occurrence of complications for each surgery type.

Table 1 Frequency of adverse event recording comparing prospective data collection with HIPE data

<table>
<thead>
<tr>
<th>Complication</th>
<th>Adverse Event Form</th>
<th>HIPE Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constipation</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Anaemia</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Delirium</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac event</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Arrhythmia/ventilation</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Pressure sore</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Peri-prosthetic fracture</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Wound site</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dehydration</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Abnormal LFTs</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Surgical site infection</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Chest infection</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total adverse events</td>
<td>55</td>
<td>3</td>
</tr>
</tbody>
</table>

CPD available online at www.imj.ie and questions on page 319

To receive CPD credits, you must complete the questions online at www.imj.ie.
events recorded in the study included cardiac events (5.5%), respiratory complications that needed intubation/oxygenation (3.5%), acute kidney failure (3.6%), and sepsis (1.8%). The grades of adverse events that occurred ranged from 2 to 6. 10 patients suffered a grade 2 adverse event, 12 patients suffered a grade 3 adverse event, 5 patients suffered a grade 4 adverse event and 1 patient had a grade 6 adverse event resulting in that patient’s death (Figure 2). This demonstrates whilst the majority of patients suffered non-life threatening events, for 6 (15.3%) patients the complication they suffered led to a prolonged (>6 months) adverse effect on their health and in one case the death of a patient.

In contrast, the HIPE data shows that only 13 (23.6%) adverse events were recorded (Table 1). There were 42 (76.4%) adverse events which were not recorded in the HIPE data for this patient cohort. In addition, two patients who were recorded using the prospective data collection sheet were not recorded by HIPE. There was no grading system or similar system used by HIPE to convey the complexity of adverse events that were recorded and the potential long-term consequences for the patient.

Discussion
As the demographics of our population is changing and the incidence of hip fractures is projected to increase, it is important that the post-operative complications are accurately documented. This study looked at prospectively collected data in order to gain a more accurate account of all medical complications. The mean patient age was 80.5 years and given the other co-morbidities of the cohort and the nature of the surgery, these factors likely lead to an increased risk of developing post-operative adverse events and complications. We recorded a high level of post-operative adverse events with 71.8% of patients recorded as suffering an adverse event. The majority of these where non-life threatening events but life threatening adverse events such as cardiac events, respiratory complications, acute kidney failure and sepsis accounted for over 16% of total adverse events recorded. Only 25.6% of patients suffered one adverse event with the majority suffering greater than one. These figures are much higher than obtained data by means of retrospective chart abstraction. Lawrence et al[19] looked at medical complications and outcomes after hip fracture repair. They analysed 8,930 and concluded that post-operative complications affect prognosis in addition to 30 day and 1 year mortality rates.

In particular, they found that patients with greater than one post-operative complication had a particularly poor prognosis. This study, which had a large patient cohort, had very different adverse event rates from our study. Overall, they found that 19% of patients had an adverse event with only 0.7% of patients having 2 adverse events and 0.3% of patients having 3 or more adverse events. This significant difference in complication rates between studies may be due to errors in reporting or inaccurate recording of adverse events. Given the fact that post-operative complications have major implications on the patient’s outcome, it is imperative that accurate recording takes place. In the study by Lawrence et al[19], they recognised that their study’s primary limitation is its retrospective chart audit design. They recognise that this may have led to them having underestimating the incidence of some adverse events.

Many studies to date have depended on retrospective chart abstraction to obtain their data on adverse event reporting. The problem is that there are inconsistencies in the extent of reporting of adverse events between centres. This makes it difficult to make an accurate comparison between centres[20,21]. Krizek (2000) believes that is inadequate to retrospectively collect data from the medical record[1]. He believes that we should collect the data at the point of care, which will be much more accurate. Runciman et al[22] compared adverse event reporting in the Quality in Australia Health Care Study (QAHCS) and the Utah-Colorado Study (UTCOS) accounting for methodological differences between the two studies. Despite this, a threefold difference in the levels of reporting of adverse events between the two centres was noted. What Runciman concluded was that whilst there were similarities between reporting rates for more serious adverse events than for the remaining categories of adverse events, there were 6-7 times more adverse events reported by QAHCS than UTCOS. This Runciman believes is partly due to under reporting of adverse events by UTCOS.

In our study collecting data prospectively we aimed to give a more accurate representation of adverse events occurring in this cohort of patients. Major differences between levels of adverse event recording were evident between our data and HIPE data which was obtained retrospectively using a chart abstraction method. Using a grading system for the adverse events also gives a more in-depth analysis of the likely additional cost and informs us whether the adverse event has a short or prolonged effect on the patient’s outcome. Reasons for under-reporting include differences in adverse event definition, reporting bias and the data not being recorded accurately. In addition, data on adverse events is currently being retrospectively recorded and is dependent on the non-medically trained administrator being able to interpret the information that is recorded in patient charts.

The system we used in this study will hopefully eliminate much of this error and as the data is being collected prospectively leads to much more accurate recording of adverse events. Using a standardised adverse event form, as we did in this study, has already been proven to reduce variability in what personnel record for spinal surgeries[27]. This study was a pilot study and a limitation is that we had a small patient cohort of 39. The aim is to introduce this system of recording to a much larger patient cohort across all general and orthopaedic trauma. If this system of prospective adverse event recording is introduced nationally it could lead to more accurate recording of adverse events. In addition, as the form is standardised it would allow comparison between centres and reduce reliance on the chart abstraction method. This would result in better planning of services and resource allocation without creating additional cost.

Correspondence: K Doody
Department of Orthopaedics, University Hospital Limerick, Dooradoyle, Co Limerick
Email: doodyk@gmail.com

References
A National House-staff Audit of Medical Prophylaxis in Medical Patients for the PREVENTion of Venous ThromboEmbolism (PREVENT-VTE)

H Adamali1, AM Suliman2, H Zaid3, E O’Donoghue4, A Burke5, AW Suliman4, M Salem5, A O’Toole6, A Ibrahim Yearoo7, I Javid7, I Ullah8, K Bolger9, E Dunican10, B McCullagh11, D Curtin11, MT Lonergan11, L Dillon1, AW Murphy11, S Gaine1 and PREVENT VTE Investigators

1 Mater Misericordiae University Hospital, Eccles St, Dublin 7
2 Kerry General Hospital, Tralee, Co Kerry
3 Waterford Regional Hospital, Dunmore Rd, Waterford
4 Mid-Western Regional Hospital, Dooradoyle, Co Limerick
5 Midland Regional Hospital, Mullingar, Co Westmeath
6 Sligo General Hospital, The Mall, Sligo
7 Midlands Regional Hospital, Portlaoise, Co Laois
8 St John’s Hospital, St John’s Square, Limerick
9 Conolly Hospital, Blanchardstown, Dublin 15
10 Beaumont Hospital, Beaumont, Dublin 9
11 Letterkenny General Hospital, Letterkenny, Co Donegal

Abstract

We established a national audit to assess the thromboprophylaxis rate for venous thromboembolism (VTE) in at risk medical patients in acute hospitals in the Republic of Ireland and to determine whether the use of stickers to alert physicians regarding thromboprophylaxis would double the rate prophylaxis in a follow-up audit. 651 acute medical admission patients in the first audit and 524 in the second re-audit were recruited. The mean age was 66.5 yrs with similar numbers of male and female patients and 265 (22.0%) patients were active smokers. The first and second audits identified 549 (84%) and 487 (93%) of patients at-risk for VTE treatment.

Mechanical thromboprophylaxis was instigated in 75 (13.6%) patients in the first and 86 (17.7%) patients in the second audit. The placement of stickers in patient charts didn’t produce a significant increase in the number of at risk patients treated in the second audit. There is unacceptably low adherence to the ACCP guidelines in Ireland and more complex intervention than chart reminders are required to improve compliance.

Introduction

Acute VTE occurs in medical inpatients, contributing significantly to morbidity and mortality.1-4 In the UK, it’s estimated that up to 25,000 hospital death per year are due to pulmonary embolism (PE). Of the cases of fatal PE, 75% occur in hospitalized medical patients who weren’t receiving prophylaxis.5 The frequency of confirmed DVT is 10-20% in hospitalized patients and can be significantly reduced through prophylaxis.6 Cochrane7 and NICE® have reviewed the importance of VTE prophylaxis. LMWH treatment reduced the incidence of DVT by 60%, and symptomatic PE by 39% compared to placebo (RR 0.61, 95% CI 0.25,1.5).8 Hospital policies regarding thromboprophylaxis vary from mandatory intervention to physicians’ discretion. Some audits suggest that physicians have begun to recognize VTE as a serious
Nevertheless, VTE prophylaxis remains underutilized in many centres. The objectives of this audit were to determine (1) the background rate of patients at-risk in representative hospitals throughout Ireland (2) the rate of VTE prophylaxis in those patients (3) if we would double the rate of VTE prophylaxis in at-risk medical patients by repeating the audit following the introduction of a specific physician reminder program using stickers in the charts of new medical admissions.

Methods

Acute medical patients, after written consent was obtained, were enrolled. Data were obtained from medical records. The same non-consultant hospital doctor (NCHD) completed both audits. Each audit had to be completed within five days of the first patient enrolment. The ACCP guidelines for thromboprophylaxis and the Cohen model for completion of VTE risk assessment were provided. Exclusion criteria included following patients: psychiatric, pediatric, palliative, maternity/obstetrics, neonatal, burn, ear nose and throat, dermatological, ophthalmologic, alcohol/drug treatment, rehabilitation patients and those admitted by the surgical teams. Patients admitted for treatment of DVT or PE (begun <24 hours of admission) or admitted for diagnostic testing only were excluded.

The two audits were separated by 3 months. During the five days of each audit a pre-printed sticker was placed in the chart informing the team that the patient was participating in an audit, and recorded if VTE assessment was completed. A second pre-printed sticker was inserted in the local prescription card with a direction on therapeutic intervention. A third sticker was used to remind and notify that patient personnel that the patient participated in the study and that follow-up and treatment may be warranted. Following the first audit, specific stickers were placed in the charts of all new admissions over a three-month period, raising awareness and increasing the rate of medical prophylaxis. It was assumed for the power calculations that approximately 39% of patients included in the study would be at risk of VTE. It was recommended that at least fifty patients be recruited in both audit periods in each centre, allowing detection of a doubling of the intervention rate (medical prophylaxis) from a 10% to 20% with power of 90%.

The rates of risk assessment and VTE intervention were summarized for each centre and overall across all hospitals for each study period. For the rate of risk assessment, the planned analysis was a proportional odds model to estimate the odds ratio of risk assessment being done versus recommended/not done for the second audit relative to the first. An overall estimate of the rate of risk assessment performed was also derived using a mixed model analysis treating the centers as random effects. The change in the rate of intervention from the first to the second audit was analyzed using a logistic regression model fitted with terms for centre and audit period to see if centers differed for the change in intervention rate. The data show the odds ratio of final intervention rate to initial intervention rate, with 95% confidence intervals. This indicates whether the change seen was similar across all participating centers, or whether there were some centers performing differently to the others. All statistical analyses were carried out using SAS Version 9.2 for Windows.

Results

Study Population

11 acute hospitals participated, recruiting 651 patients during the first audit and 524 in the second; one centre did not perform the second audit and as a result was excluded from analyses. The number of patients recruited by each centre ranged from 38 to 98 in the first audit and from 22 to 100 in the second. Six patients were excluded from all analyses; three did not give informed consent and three didn’t meet the study inclusion criteria. In the first audit period, the mean age of patients was 65.6 (±18.1) yrs. In the second audit the mean age was 67.5 (±18.5) yrs. In both audits, there were equal numbers of males and female patients. The age and sex distribution of the patients studied in the two audits were similar across all centers. In the first and second audits 21.8% and 23.5% of patients respectively were actively smoking. Smoking status was also similar for the two audits. The prevalence of all chronic diseases documented was similar within centers between the two audits (Figure 1).

Risk Assessment in Patients At Risk of VTE

In the first and second audits 84% and 93% of patients were considered at risk of VTE respectively. The rate of risk assessment being completed and documented in the medical record for those patients considered at risk of VTE was 53.7% and 47.0% in the first and second audits, respectively (Table 1). With the exception of 2 sites, the results for each centre are all consistent with the overall estimate. The overall estimate of the probability of risk assessment being done at the first visit was 0.53 and 0.50 at the second visit, giving an odds ratio for the difference between visits of 0.90 (95% C.I. 0.69 to 1.10) (Table 2).

Table 1 Risk assessment rates of patients at risk and not at risk from VTE in the first and second audits

<table>
<thead>
<tr>
<th>Patients Not At Risk</th>
<th>At Risk Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Audit (N=102)</td>
<td>2nd Audit (N=37)</td>
</tr>
<tr>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>53 (52.0%)</td>
<td>11 (29.7%)</td>
</tr>
<tr>
<td>295 (53.7%)</td>
<td>229 (47.0%)</td>
</tr>
</tbody>
</table>

VTE intervention

The patients who were at risk of VTE were significantly more likely to have VTE intervention than those who were not (p<0.0001); the odds of having intervention for the at-risk patients being around three times higher than those not at risk. There was a statistically significant interaction between centre and the audits (p<0.0001) in terms of the rate of intervention. The rates of intervention increased in the second survey for three of the hospitals. The rates for three of the hospitals declined. The rates in the other centers were similar for the two audits. Fitting the centers as random in order to derive an overall estimate for the at-risk patients of the rate of intervention during the second audit relative to the first yielded no statistically significant difference (p=0.1). The odds ratio for the odds of intervention at the second visit relative to the first was 0.80 (95% C.I. 0.60 to 1.05) (Figure 2). The number of
at-risk patients receiving LMWH was 27.39% for first audit and 27.11% for the second. The number of at-risk patients receiving mechanical prophylaxis increased from 13.6% in the first audit to 17.7% in the second audit.

Discussion

This national study showed that the use of VTE-prophylaxis was sub-optimal in Ireland. While at-risk patients were more likely to have a VTE intervention, only 27% of this at-risk group was higher than anticipated. The study was planned to detect a doubling of the intervention rate, based on an initial intervention rate of between 10% and 40%. In this study the lowest rate of intervention during the first survey period was 34% only in one centre whereas in remaining centers the rates were >50%. It is well recognized that acutely ill patients have an increased risk of developing VTE. The ENDORSE Global study has reported a range of 21.1% to 71.2%. In our study 84% and 94% of our patients were in the at risk category. This could be accountable by an older population with multiple co-morbidities presenting in our hospitals giving these patients a higher risk profile.

The inconsistent use of prophylactic measures for VTE in hospital patients seen in our study has been widely reported. A UK survey suggested that 71% of patients assessed to be at medium or high risk of developing deep vein thrombosis did not receive any form of mechanical or pharmacological VTE prophylaxis. The French experience showed that of the 50% of at risk patients, 38.6% did not receive thrombo-prophylaxis. Globally, the findings of the International ENDORSE study indicated that up to 50% of all hospitalized patients at-risk for VTE were not receiving appropriate prophylaxis. Furthermore, medical patients at-risk for VTE were less likely than surgical patients to receive appropriate prophylaxis. A larger study spanning 32 countries showed 70% of the hospitalized medical patients, < 50 years of age did not receive VTE prophylaxis. Between audits there was no increase in the use of VTE-prophylaxis despite the increased prevalence risk factors including cardiovascular disease and chronic pulmonary disease. Interestingly many patients not at risk received thromboprophylaxis treatments (data not shown). Implementation of VTE-prophylaxis may be confounded by several factors including confusion regarding the assessment of VTE-risk, lack of awareness of VTE-risk and complexity associated with the patients.

Other authors have shown improvement in VTE prophylaxis rates using similar sticker-based approaches. In contrast to our study, these studies used a single site hospital; or survey encompassed 11 hospital sites throughout Ireland. The New Zealand based survey utilized pharmacist to identify patients who were suitable for thromboprophylaxis, prompting physicians to consider LMWH and recommending doses after performing risk assessments. Three trials have guided the use of VTE-prophylaxis in hospitalized patients: MEDENOX, PREVENT and ARTEMIS. The population cohort of these trials may have been biased in selecting patients who were at high risk and who had a low bleeding risk. Our doctors in contrast may be dealing with elderly frail patients with high risk of falls and bleeding. Hence there may some reluctance in prescribing the LMWH.

The recommendations from the ACCP for thromboprophylaxis apply to patients with congestive cardiac failure or severe respiratory disease confined to bed and have one or more additional venous thromboembolism risk factors and those admitted to ICU. Other risk stratification systems including those described NICE and other authors are available however none of these have been validated in clinical trials. The implementation of a standardized national protocol in Ireland for risk assessment and prophylaxis prevention of VTE is lacking even though it remains an ACCP Grade 1A recommendation. In the UK, financial incentives for organizations have been introduced for Quality and Innovative Payment Framework (COUINN). A proportion of COUINN payments to acute providers are conditional on risk assessing at least 90% of patients admitted to hospital. VTE-prophylaxis champions, be it nursing, pharmacists or physicians may be required at each ward to improve rates. Urgent national support and prioritization of VTE-prevention led by clinicians and multidisciplinary teams are essential to ensure that the protocols are in place.

Correspondence: S Gaine
Mater Misericordiae University Hospital, Eccles St, Dublin 7
Email: sgaine@mater.ie

Acknowledgements

PREVENT VTE Investigators: M Tariq, S Foley, D O’Keeffe, P Murphy, J Doherty, J Connaughton, E Mulloy, J Faul, R Costello, V Keatings, MT O’Connell. This study was supported by an unrestricted research grant provided by sanofi-aventis Ireland Ltd. The technical and statistical support of P O’Grady (Sanofi) is gratefully acknowledged.

References

The Compliance to Acute Asthma Management Protocols in Paediatric Emergency Department

F Yasin, C Martin, T Bolger
Department of Paediatric Emergency Medicine, AMNCH, Tallaght, Dublin 24

Abstract
Asthma guidelines should be followed closely to ensure improvement and consistency of outcome. In order to measure compliance with local acute asthma protocols, we reviewed notes of children presenting to our ED with acute asthma. We noted clinical assessment of severity of asthma exacerbation, compared management of cases with local protocols, noted time to first nebulisation, discharge advice and follow up plans. Retrospectively, 6 patients had life-threatening, 70 had severe and 64 had mild-to-moderate exacerbation. We observed inconsistent documentation of clinical signs including, respiratory effort 6 (100%), 62 (89%), 39 (61%), mental status 3 (50%), 46 (65%), 47 (73%) and speech 1 (16%), 19 (27%), 7 (11%) in life threatening, severe and mild-to-moderate groups respectively. Bronchodilator therapy was delayed in life-threatening 3 (50%) and severe cases 63 (90%). While discharge advice was documented in 54% patients, no written asthma action plans were given. This study demonstrated necessity of protocol-adherence in areas of clinical assessment, management and follow up.

Introduction
Asthma is a common chronic inflammatory disease of the airways characterized by variable recurring symptoms, reversible airflow obstruction, and bronchospasm. Ireland has the 4th highest prevalence of asthma worldwide. There are approximately 5,000 asthma-related hospital admissions per year, of which 44% are young patients aged less than 15 years. Annual Emergency Department visits are four times this figure. Being a common condition, there should be a unified approach and education of medical care providers towards the management of this condition. Inadequate therapy with the selection of inappropriate medicines is among the failings in asthma management. Various national and international guidelines have been developed to address asthma management. Local protocols have been adopted in different institutions which draw on these broader guidelines. In the paediatric age group clinical signs provide essential information about the severity. In a prospective cohort study, assessment based upon clinical features alone has been shown to be equal to PEFR evaluation in discriminating severe cases requiring hospital admission. Furthermore once the severity is assessed, prompt initiation of bronchodilator therapy is the mainstay of treatment. Also following the achievement of control of exacerbation, appropriate follow up and written action plan are beneficial to prevent future acute attacks. Guideline concordance is crucial to translate the guidelines into...
improved asthma service. Unfortunately, provider adherence to these guidelines remains an issue. Most of the studies to investigate guideline adherence are based on self-reported data obtained by interviews or questionnaires. Most of the clinicians are aware of these guidelines but there are potential barriers described in these studies. We wished to investigate how adherent clinicians were in complying with local asthma management protocols in Paediatric Emergency Department (ED) of Tallaght Hospital. Our study was based on data from medical notes documented by emergency department clinicians. The objective was to measure the compliance with local acute asthma management protocols in Paediatric ED setting of a tertiary referral centre.

Methods

Patients presenting with signs and symptoms of acute asthma during a three month period from January through March 2011 were selected and their medical records were retrospectively audited in the ED. Documentation of clinical findings, such as, respiratory effort, speech ability, mental status, oxygen saturation, heart rate and respiratory rate were noted to assess the severity of asthma exacerbation. Patients were retrospectively assigned to the following three categories: mild-to-moderate, severe, and life threatening by the investigators according to the documented signs. These categories were defined in the local hospital protocol. Mild to moderate category was defined as: Normal mental status, able to talk, some accessory muscle use and oxygen-saturation (SaO2) >92%. Severe exacerbation was defined as: Normal mental status, single word speech, marked accessory muscle use, SaO2 between 90–92%, heart rate of >130/min (<5years) and >120/min (≥5years), respiratory rate of >40/min (<5years) and >30/min (≥5years). Life threatening episode was defined as: altered mental status, inability to talk, silent chest and SaO2 less than 90%.

According to the protocol, patients were designated and treated on the basis of the most severe feature. In the study, acute treatment of each category was compared to the local acute asthma management protocol. According to the protocol, addition of Ipratropium to Salbutamol as first line nebulisation was reserved for severe and life threatening cases only. Any deviation from the protocol was considered as non-adherence. We also examined the quality of our interventions by detailing the time between triage and commencement of first nebulisation; post-acute management outcome; discharge advice and the follow up plan.

Results

During the audit period, 140 patients attended our ED with acute asthma exacerbation. Age of the children ranged between 1 to 19 years with a median age of 5 years ± 3.5years. Out of 140 cases, 112 patients (80%) were known to be asthmatic.

Clinical Features and Severity

Based on above documented clinical signs, the retrospective severity of asthma exacerbation was: mild-to-moderate exacerbation in 64 (45.7%), severe exacerbation in 70 (50%), and life threatening exacerbation in 6 (4.3%) cases. During their assessment of severity, vital signs were uniformly recorded in all children by nursing staff. Respiratory effort was documented in all patients with a life threatening exacerbation. In the severe group, it was not recorded in 11% of patients. Also, 5% of patients who were considered as severe exacerbations had no respiratory distress according to clinical assessment (Table 1 and 2).

In life threatening exacerbations, mental status and speech were not documented in 50% and 83.3% of cases respectively. In patients presenting with severe symptoms, these parameters were lacking in 34.3% and 72.9% of the cases respectively. Despite the relatively poor recording of clinical signs, there was 100% correlation between our retrospective categorisation of cases and their treatment in the severe and life threatening groups. In the mild-moderate group, over 50% were treated as severe despite only having signs consistent with a milder asthma exacerbation. Fifty percent of life threatening cases received first nebulisation immediately after the triage while the average time interval in this group was about 15 minutes. Ten percent of severe cases had first bronchodilator within 10 minutes of triage and nearly two thirds were managed within 60 minutes while average time interval in this group was 54 minutes.

All of the life threatening cases were admitted / transferred to another hospital. Ninety percent of mild to moderate and 40% of severe cases were discharged after acute management. Only one patient re-attended the emergency department within one week of last presentation. Fifty four percent of the discharged patients had discharge advice documented such as GP review, asthma nurse review and respiratory consultant outpatient referral. No asthma action plans given to patients.

Discussion

Our study demonstrated varying degree of adherence to local asthma protocol by clinicians. In ED, initial triage assessment plays an essential role in raising concern about the severity of any condition. In this study, vital signs were uniformly recorded in all children at triage. The importance of use of accessory muscle as an indicator of respiratory distress is established for decades. A prospective study by Kerem et al showed that of all clinical findings the degree of accessory muscle use correlated most closely with lung function. Similarly, the degree of accessory muscle use correlated most closely with Oxygen-saturation followed by dyspnoea and respiratory rate. In our study, we noted variable recording of respiratory signs. While there was good correlation between severity assessment and treatment in the more extreme cases, we saw over treatment in the milder cases which suggests that the assessment was deficient. It was also concerning that some patients were felt to have no respiratory distress despite being retrospectively being labelled as severe cases.

Furthermore, mental state and speech are important non respiratory features of severity of exacerbation and any deterioration in these should alert clinicians to prepare for potential respiratory failure. Consequently we would stress the significance of each clinical feature as asthma is a multidimensional clinical entity and no single parameter can reliably reflect the full picture of exacerbation. Therefore the best

Table 1 Frequency of recorded signs of respiratory distress (Retrospectively categorisation)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mild/Mod</th>
<th>Severe</th>
<th>Life threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>MENTAL STATUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Recorded (NR)</td>
<td>17 (20.6%)</td>
<td>24 (34.3%)</td>
<td>3 (50.0%)</td>
</tr>
<tr>
<td>Normal</td>
<td>47 (75.4%)</td>
<td>46 (65.7%)</td>
<td>2 (33.3%)</td>
</tr>
<tr>
<td>Altered</td>
<td></td>
<td></td>
<td>(1.617%)</td>
</tr>
<tr>
<td>SPEECH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>57 (83.3%)</td>
<td>51 (72.9%)</td>
<td>5 (83.3%)</td>
</tr>
<tr>
<td>Able</td>
<td>7 (10.9%)</td>
<td>15 (22.9%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (4.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (1.617%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPIRATORY EFFORT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>25 (39.1%)</td>
<td>8 (11.4%)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>15 (23.4%)</td>
<td>4 (5.7%)</td>
<td></td>
</tr>
<tr>
<td>Some</td>
<td>24 (37.5%)</td>
<td>25 (35.7%)</td>
<td></td>
</tr>
<tr>
<td>Marked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silent</td>
<td>33 (471%)</td>
<td>6 (9.00%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Correlation of actual treatment with retrospective categorisation of severity (Retrospectively categorisation)

<table>
<thead>
<tr>
<th>Treated as:</th>
<th>Mild/Mod</th>
<th>Severe</th>
<th>Life threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild/mod</td>
<td>28 (43.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>36 (56.2%)</td>
<td>70 (100%)</td>
<td>6 (100%)</td>
</tr>
<tr>
<td>Life threatening</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
practice is to combine all related information in each case and come to an appropriate level of severity which will then dictate our treatment. Studies and meta analysis show an important role for Ipratropium in severe cases of acute asthma than milder cases. Addition of Ipratropium to acute management was shown to significantly reduce the hospitalization rates in severe cases while in milder to moderate cases its effect was same as Salbutamol or Albuterol alone group. In regards to treatment, an important observation was the delay in initiation of bronchodilators in life threatening and severe cases. Prompt bronchodilator therapy is the mainstay of acute asthma treatment while delay can have disastrous outcome of the disease. In an attempt to expedite the treatment, studies have been done to show comparable result of spacer device versus nebulizer in instituting prompt therapy and relief. It is important to mention here, the approach of our study, where we retrospectively categorized the patients according to their most severe features in the notes. Life threatening cases should not necessarily be considered as patients ‘in extremis’ but certainly had the potential to deteriorate quickly and should have been treated as life threatening cases in real time also, as per our local protocol. At the same time, the value of our audit was to recognize any areas where deficiencies might occur. Again there is a possibility that the delay might have occurred secondary to poor recognition of signs of severity.

All life threatening and most severe cases were admitted for extended management and monitoring. Re-attendance of only one patient among severe cases after being discharged reflected good outcome of treated children in ED. Another appreciable observation was documented discharge advice/follow up in more than half of the discharged patients such as GP review, asthma nurse review and respiratory consultant out-patient referral. Although we acknowledge that not all asthmatics require a respiratory consultant review after every exacerbation, care should be taken in cases where certain risk factors warrant appropriate follow up as guided by guidelines. BTS guidelines recommend follow-up of all patients after acute exacerbation by primary physicians or asthma nurse within two working days and medical OPD within a month. There was no asthma action plans given to patients. The significance of written action plan is clearly established by various studies in prevention of further acute attacks, recognition and prompt treatment in case of exacerbation and reduction in hospital visits to ED. Being a busy departement, unavailability of written action plan in ED is a possible reason for clinicians for not been able to provide adequate discharge advice to patients.

The study emphasizes the importance of guideline concordance for clinicians. It highlights areas where additional work is required. These include documentation of clinical findings to correctly categorize the severity of acute attack, selection of right arm of algorithm for appropriate treatment, prompt initiation of bronchodilator, in life threatening (immediately) and severe cases (within 10 minutes) after triage. We recommend continuing the follow-up plan when required. This study has educated the staff on the importance of recording clinical signs and appropriate treatment. We have also introduced the written action plan for discharge. This will standardise our care and facilitate regular audits for this common condition.

Correspondence: F Yasin
Department of Paediatric Emergency Medicine, AMNCH, Tallaght, Dublin 24
Email: mkmb_12@yahoo.com

References
2. NHLBI Guideline 2007, pp. 11–12.
The Intensity of QuantiFERON TB-Gold Response does not Differentiate Active from Latent Tuberculosis

F Khan, O Cotter, B Kennedy, J Clair, B O’Connor, J Collins, D Curran, T O’Connor
Mercy University Hospital, Grenville Place, Cork

Abstract
We analyzed positive QuantiFERON (QFT) assays, performed between July 2009 and April 2011 in the Mercy University Hospital, Cork, Ireland, which included, 94 patients with latent tuberculosis (LTBI) and 35 patients with active tuberculosis. There was no difference in the intensity of response between patients with LTBI and active tuberculosis (p=0.157). In patients with LTBI, there were no correlations between age (p=0.583), sex (p=0.476), smoking (p=0.323), contact (p=0.612), Mantoux response (p=0.056), Irish nationality (p=0.768), previous BCG vaccination (p=0.504), WCC (p=0.187), lymphocyte count (p=0.786), neutrophil count (p=0.157) and the intensity of QFT response. Similarly in patients with active TB, there were no correlations between these variables and QFT response. The intensity of QFT response does not help to differentiate active from LTBI. The intensity of QFT response is not influenced by age, sex, smoking, remoteness of contact history, Mantoux response, nationality, CXR abnormalities, BCG vaccination and peripheral lymphocyte count.

Introduction
In 2010, there were an estimated 8.8 million incident cases of active TB globally and 1.4 million deaths. It has been estimated that up to one third of the world’s population has latent TB infection (LTBI). However, this figure is estimated from data obtained from tuberculin skin testing (TST). Using TST to diagnose LTBI may cause false-positive results in individuals who have been vaccinated with bacille Calmette et Guérin (BCG) or exposed to environmental mycobacteria. Furthermore, false-negative results occur in immunosuppressed individuals, suggesting that the estimated global prevalence of LTBI may be inaccurate. The QuantiFERON-TB Gold test (QFT) is based on a whole-blood ELISA developed in the late 1980s and is approved for in vitro diagnosis of tuberculosis infection by the U.S. Food and Drug Administration. Guidelines from the U.S. Centers for Disease Control and Prevention (CDC) in the use of interferon-gamma release assays (IGRAs), to diagnose Mycobacterium tuberculosis infection have been published and identified where IGRAs can be used to help diagnose both LTBI and active TB. The specificity of the QFT assay is higher than the TST, as it is not affected by previous BCG vaccination. In addition, this test is less influenced by anergy than TST. IGRAs could therefore improve existing information about the global prevalence of LTBI.

The QFT assay is of value in distinguishing true positive TST reactions in patients with LTBI from false positive reactions in those who have been vaccinated with BCG, but is also useful in the diagnosis of active TB, particularly in those without culture confirmation. There are some limitations to the QFT assay. A negative QFT test does not exclude TB disease in immunosuppressed patients. The sensitivity of QFT partly depends on peripheral lymphocyte counts. Therefore, in the presence of lymphopenia, the ELISPOT assay is superior to QFT for detecting tuberculosis infection. Accessibility and time constraints may cause difficulty in completing QFT. Blood samples must be processed within 8-16 hours. Also, limited data existing on use in children younger than 5 years of age, persons recently exposed to TB, and those who will be tested repeatedly.

It is not clear whether the intensity of QFT response can help to distinguish LTBI from active TB. Several studies have reported varying results in this respect. Metcalfe showed that higher quantitative IFN-γ results were associated with active tuberculosis in a cohort of patients from San Francisco and Kobashigawa demonstrated significantly higher QFT response in patients with active TB in Japan. In contrast, other studies have suggested that IGRAs cannot distinguish TB infection from disease in children and that concentrations of IFN-γ did not differ in children with LTBI and TB either before or at the end of treatment.

We sought to determine whether the intensity of response in patients with a positive QFT assay was predictive of active over latent tuberculosis, and whether other factors determined the intensity of response in adults with latent tuberculosis.

Methods
A retrospective analysis of 129 immunocompetent patients from Mercy University Hospital, Cork, Ireland with a positive QFT between July 2009 and April 2011 was conducted. The study population consisted of 35 patients with active tuberculosis and 94 patients with LTBI. LTBI was defined as per CDC guidelines with no symptoms or physical signs suggestive of TB disease, normal radiological findings with positive TST or QFT and negative smear and culture of respiratory specimens. The majority of the patients that were included in the study had been referred to the TB outpatient clinic in the Mercy University Hospital from occupational health departments following occupational screening for LTBI and from public health clinics after screening people who were in close contact with patients with infectious pulmonary TB.

Data recorded (Table 1) included age, gender, history of TB infection or antituberculosis treatment, other respiratory and non-respiratory diseases, medication use (including immunosuppressive drugs), smoking and alcohol consumption, nationality and duration of residence in Ireland if foreign born, previous TST results (in millimeters), contact history with patients with infectious tuberculosis and BCG vaccination, laboratory and radiologic data, including white cell count (total and differential count), sputum or bronchial washing TB smear and culture results, chest radiograph, and thoracic CT results were collected. Sequential testing with Mantoux, followed by QFT in patients with positive Mantoux tests was performed. QFT assays were taken on the day of reading of the Mantoux test, that is, within three days of Mantoux insertion.

One hundred and eleven patients had positive Mantoux tests (31 in group 1 and 80 in group 2). For the TST test, 0.1 mL of tuberculin (Nippon BCG Manufacturing; Tokyo, Japan [equivalent to 2 tuberculosis units of purified protein derivative]) was injected intradermally into the volar aspect of the forearm, and the transverse diameter of induration was measured 48 h later. Results were interpreted by hospital staff based on CDC guidelines for tuberculin testing. Each patient in both groups had a heparinized venous blood sample collected for the purpose of performing QFT test. The QuantiFERON-TB Gold test was performed according to the manufacturer’s instructions (Cellestis, Carnegie, Australia), and the test results were reported according to the guidelines of the CDC. Detection of IFN-γ by ELISA was used to identify in vitro responses to ESAT-6 and CFP-10 that are associated with M. tuberculosis infection. Aliquots of heparinized
whole blood were incubated with the test antigens for 16-24 hours. Blood was incubated with the test antigens <12 hours after collection. Test kits included two mixtures of synthetic peptides representing ESAT-6 and CF10 as test antigens, phytohemagglutinin and saline. After incubation, the concentration of IFN-γ in the plasma was determined by ELISA using reagents included in the test kit. The amount of IFN-γ released was determined by subtracting the amount in the negative control from the amount in the ESAT-6, CF10, or mitogen stimulated plasma sample.

The quantitative values from the TB antigen containing tubes are compared to negative (NC) and positive ("mitogen tube") controls, which determine the validity of the test. The results can be indeterminate if the NC has inappropriately high levels of IFN-γ. Similarly, a "low mitogen" indeterminate result can occur due to an inappropriately low IFN-γ response to mitogen in the positive control. This may indicate the mishandled specimens or immune suppression. The test is interpreted as positive with IFN-γ values >0.35 IU/L higher than NC i.e. TB-NC >0.35 IU/L is positive and TB-NC <0.35 IU/L is negative test, in the absence of inappropriate nil or mitogen responses.

Information from the collected demographic data, clinical history, laboratory, microbiological and radiological findings, TST results, and whole blood IFN-γ assay results were entered into a database and then transferred to a statistical software package (Graphpad InStat, San Diego, CA) for analysis. Unpaired t-tests were used to determine differences between parametric data and the Mann-Whitney test was used to determine differences between non-parametric data. The Pearson χ2 test was used to compare parametric correlation and Spearman's rank correlation coefficient for non-parametric correlation between groups. A p-value<0.05 was considered statistically significant.

Results
35 patients with active TB and 94 with LTBI were analyzed. Of the 35 active TB patients, 12 had extrapulmonary TB and 23 had pulmonary TB. In the latter, 7 patients were sputum culture positive for Mycobacterium tuberculosis (MTB) and the remainder had bronchial washing cultures that were positive for MTB. Of the 12 patients with extrapulmonary TB, 7 had lymphadenitis, 3 had tuberculous abscesses (1 epididymal, 1 inguinal and 1 pectoral tuberculous abscess), 1 had TB meningitis and 1 had TB parotitis.

Table 2 Comparison of variables between active and LTBI group. Data are presented as mean ± SD unless otherwise indicated

<table>
<thead>
<tr>
<th>Demographic details</th>
<th>Active (n=35)</th>
<th>Latent (n=94)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>43.5 ± 1002</td>
<td>45.2 ± 18.3</td>
<td>0.1102</td>
</tr>
<tr>
<td>Male sex</td>
<td>23 (66%)</td>
<td>55 (59%)</td>
<td>0.4905</td>
</tr>
<tr>
<td>Smoking</td>
<td>22 (63%)</td>
<td>50 (53%)</td>
<td>0.3291</td>
</tr>
<tr>
<td>Months since contact</td>
<td>64.2 ± 19.3</td>
<td>76.9 ± 15.6</td>
<td>0.4605</td>
</tr>
<tr>
<td>Mantoux (mm)</td>
<td>18.4 ± 6.02</td>
<td>18.0 ± 6.03</td>
<td>0.5201</td>
</tr>
<tr>
<td>Irish born</td>
<td>11 (31%)</td>
<td>19 (20%)</td>
<td>0.1820</td>
</tr>
<tr>
<td>How long in Ireland (months)</td>
<td>75.6 ± 64.2</td>
<td>95.4 ± 103.7</td>
<td>0.7744</td>
</tr>
<tr>
<td>BCG vaccinated</td>
<td>25 (71%)</td>
<td>77 (82%)</td>
<td>0.1961</td>
</tr>
<tr>
<td>WCC (x109/L)</td>
<td>77 ± 220</td>
<td>75 ± 103</td>
<td>0.8460</td>
</tr>
<tr>
<td>Lymphocytes (x109/L)</td>
<td>18 ± 0.63</td>
<td>23 ± 0.72</td>
<td>0.0882</td>
</tr>
<tr>
<td>Neutrophils (x109/L)</td>
<td>4.9 ± 1.80</td>
<td>4.6 ± 1.54</td>
<td>0.3005</td>
</tr>
<tr>
<td>Quantiferon MNC (IU/mL)</td>
<td>0.47 ± 0.985</td>
<td>0.35 ± 0.735</td>
<td>0.3485</td>
</tr>
<tr>
<td>Quantiferon TB-NC (IU/mL)</td>
<td>5.35 ± 3.693</td>
<td>4.58 ± 3.880</td>
<td>0.1589</td>
</tr>
<tr>
<td>Quantiferon MNC-NC (IU/mL)</td>
<td>9.03 ± 2.440</td>
<td>9.40 ± 2.319</td>
<td>0.3902</td>
</tr>
</tbody>
</table>

There was no significant difference in intensity of quantiFERON TB-Gold response between patients with LTBI and those with active TB (p=0.1589) (Figure 1, Table 2).

In patients with latent tuberculosis, there were no correlations between age (p=0.353), sex (p=0.476), smoking status (p=0.323), contact history (p=0.612), Mantoux response (p=0.055), Irish nationality (p=0.768), previous BCG vaccination (p=0.504), WCC (p=0.187), peripheral lymphocyte count (p=0.786), neutrophil count (p=0.157) and the intensity of QFT response (Table 3). Similarly in the group with active TB group, there were no correlations between these variables and the intensity of QFT response.

Discussion
These data suggest that the intensity of QFT response cannot distinguish latent from active TB. IGRAs have revolutionized the management of patients with tuberculosis. Their primary advantage is to differentiate false positive TST reactions in patients who have been vaccinated with BCG (or indeed exposed to environmental mycobacteria) from true positive TST reactions in patients infected with Mycobacterium tuberculosis. In individuals that have not been vaccinated with BCG, there is a highly significant agreement between QFT and TST results and the assay is not influenced by previous BCG vaccination.11 QFT is more reliable than the TST for identifying those who progress from LTBI to active TB. Diel reported progression to active TB in 14.6% of close contacts of active TB cases, compared to 2.3% of cases that were TST positive.12 Aichelburg reported 8.3% of patients who were QFT-positive progressed to active tuberculosis over 19 months among outpatient HIV-positive adults.13 Kik and colleagues showed lower rates of progression, 2.8% and 3.3%, among QFT and 1-SPOT®-positive immigrant TB contacts.14 IGRAs can also be used to help the diagnosis of active TB. The sensitivity and specificity of the QFT in patients with active TB has been reported to be 70.1%-89% and 91.6%-98.1%,15,16 in a study from Italy, QFT was positive in 73.8% of pulmonary and 70.2% of extra-pulmonary cases and indeterminate in 9.5% and 6.2% respectively. Of note, 16.1% had false negative QFT results, occurring more frequently in foreign-born patients (p=0.006).17

Figure 1 demonstrates that there was a difference between the intensity of response in Quantiferon assay between LTBI and active tuberculosis but that this difference was not statistically significant. Vertical bars represent standard deviation.
Published studies to date have shown conflicting results as to whether IGRA can help to differentiate LTBI from active TB. In a study from Singapore, the authors found no differences in QFT response between persons with LTBI and active TB but significant differences in quantitative T-cell responses as measured by the T-SPOT.TB assay. They concluded however that T-cell responses may indicate mycobacterial burden and disease activity, but cannot be used to definitively discriminate active from latent TB. A metaanalysis on the predictive value of QFT and TST for progression from LTBI to active disease state concluded that QFT has a higher positive and negative predictive value for progression to active TB compared with those of the TST.

In our group of adults with latent and active tuberculosis, the intensity of QFT response was not influenced by age, sex, smoking, remoteness of contact history, Mantoux response, nationality, CXR abnormalities, BCG vaccination and WCC, peripheral lymphocyte and neutrophil count. In a study from Hamburg that examined contacts of patients with tuberculosis, QFT, but not TST, results were associated with exposure time (p<0.0001). Other studies have shown that in persons with old healed TB on chest imaging, TST positivity waned in persons > 60 years but that QFT positivity was unaffected by age.20 Another study from the US showed that among foreign-born individuals with a positive TST, increasing age, male sex, origin from a country with a high prevalence of tuberculosis (TB), shorter time since arrival in the United States, and increasing TST size were all independently associated with a positive QFT but not the intensity of QFT response.

Recent studies have suggested that other biomarkers, including IL-15 and MCP-1 may help to distinguish LTBI from active TB.22 Furthermore, biomarkers such as IP-10 may represent novel biomarkers for infection with MTB.23 Although larger studies might demonstrate a statistically significant QFT response between latent and active TB, we conclude that in routine clinical practice, the intensity of QFT response cannot distinguish latent from active TB.

Correspondence: F Khan
Department of Respiratory Medicine, Mercy University Hospital, Grenville Place, Cork
Email: drfaheemkhan@gmail.com

References
Routine Obstetric Ultrasound Services

CA Walsh, F McAuliffe, V Kinsella, P McParland
Fetal Medicine Unit, National Maternity Hospital, Holles St, Dublin 2

Abstract
Antenatal ultrasonography is widely used in pregnancy to assess fetal growth, wellbeing and anatomy. Although ultrasound screening is now an integral part of routine antenatal care, recommendations for the delivery of obstetric ultrasound vary from country to country. A recent survey of English maternity units reported that 100% of women are offered routine mid-trimester fetal anomaly scanning, in line with expert recommendations. Currently in Ireland, no national guidance exists to inform practitioners on the minimum standards for obstetric ultrasound practice. In 2012, we conducted a structured telephone survey of all 20 maternity units in Ireland (n=74,377 births). Routine mid-trimester anomaly scanning was offered universally to all women in 7/20 (35%) units, offered selectively to some women in 9/20 (45%) units and not offered to any women in 4/20 (20%) of units. The time allotted for a complete fetal anatomical survey was 10-15 minutes in 4/16 (25%) units, 20 minutes in 7/16 (44%) units and 25-30 minutes in 5/16 (31%) units. Written guidelines on the appropriate management of “soft markers” for fetal aneuploidy were routinely used in 11/16 (69%) of units. In no Irish unit currently, are images from fetal anomaly scanning routinely reviewed by an obstetrician with an interest in fetal medicine. 19/20 (95%) of respondents believed that a minimum of 2 scans should be offered in routine ultrasound screening. Improvement in the availability of obstetric ultrasound to pregnant women in Ireland will require increased staffing numbers at both the ultrasonographer and fetal specialist levels. There is a clear need for national guidelines on the provision of routine ultrasound in Ireland.

Introduction
Antenatal ultrasonography is widely used in pregnancy to assess fetal growth, wellbeing and anatomy. Depending on the clinical scenario and the skills of the ultrasonographer, ultrasound is used for both screening and diagnostic purposes. Although ultrasound screening is now an integral part of routine antenatal care, recommendations for the delivery of obstetric ultrasound vary from country to country. In the UK, for example, the Royal College of Obstetricians and Gynaecologists (RCoG) recommend a 2-stage ultrasound screening programme for uncomplicated pregnancies, with an initial scan performed at booking and another at around 20 weeks gestation.1 This is in contrast to the original 1984 RCOG Working Party report, which suggested a single ultrasound scan between 16 and 18 weeks.2

A 2008 guideline from the National Institute for Health and Clinical Excellence (NICE) endorses the 2-stage approach, suggesting that “pregnant women should be offered an early ultrasound scan between 10 weeks 0 days and 13 weeks 6 days to determine gestational age and to detect multiple pregnancies” and that “ultrasound screening for fetal anomalies should be routinely offered, normally between 18 weeks 0 days and 20 weeks 6 days”.3 Indeed, in the UK, the Department of Health have outlined an agreed policy for ultrasound screening of fetal anomalies – the NHS Fetal Anomaly Screening Programme (FASP) – which aims to offer all pregnancy women in England a minimum of two ultrasound scans.4,5 In the United States, the American College of Obstetricians and Gynecologists (ACOG) recommends that “ideally, all women should be offered aneuploidy screening before 20 weeks gestation, regardless of maternal age”.4 However, the ACOG guidance also notes that “the optimal timing for a single ultrasound examination in the absence of specific indications for a first trimester examination is at 18–20 weeks gestation”.5 A recently published practice guideline from the International Society for Ultrasound in Obstetrics and Gynaecology (ISUOG) noted that “most countries offer at least one mid-trimester scan as part of standard prenatal care”.6

Currently in Ireland, no national guidance exists to inform practitioners on the minimum standards for obstetric ultrasound practice. This has led to huge variation in the delivery of antenatal ultrasound screening across Ireland. A 2007 study by our Unit found that fetal anomaly scanning was only offered routinely in 19% of Irish obstetric centres.8 In contrast, a national survey of obstetric units in the UK reported the following year found that 100% of units routinely offered a second trimester fetal anomaly scan.9 In recent months, the quality and delivery of Irish ultrasound services in pregnancy has come under scrutiny.10 In view of this, we conducted an updated survey of all Irish obstetric centres, to ascertain the current availability of routine obstetric ultrasound services to pregnant women in Ireland.

Methods
A telephone survey of Irish obstetric units was undertaken in January 2012. Respondents were asked to provide verbal answers to standard questions relating to routine obstetric ultrasound during the year 2011 under several domains: first-trimester dating scan, nuchal translucency scan, fetal anomaly scan and additional information (staffing, fetal gender, recommendations). In all cases a senior clinician, either a consultant obstetrician or the lead ultrasonographer in a unit, was surveyed, to ensure that respondents had a thorough understanding of the service offered by their unit. Respondents were assured that results would be anonymised and that practice within individual units would not be made publicly available. Denominator data on total births and deliveries per maternity unit in Ireland in 2011 were obtained from the National Perinatal Reporting System (NPRS) within the Economic and Social Research Institute (ESRI) and from the annual report of the Cork-based National Perinatal Epidemiology Centre (NPEC).

Results
The ESRI reported ‘74,377 notified births in Irish maternity units in 2011, which represents the highest birth rate per capita in the EU’.11 Of the 20 Irish maternity units, NPEC classifies 6 as small units (<2,000 births per annum), 10 as medium-sized units (2,000-5,999 births per annum) and 4 as large units (≥6,000 births per annum).12 In total, 100% of Irish obstetric units were successfully contacted by telephone in January 2012 and completed the current survey. With regard to routine mid-trimester fetal anomaly scanning, this was offered universally to all women in 17 (35%) units, offered selectively to some women in 9 (45%) units and not offered to any women in 4 (20%) of units. Figure 1

Figure 1
Availability of routine fetal anomaly scanning in Irish obstetric units in 2011.
demonstrates practices for routine mid-trimester scanning stratified by size of maternity unit. Within those units offering fetal anomaly scanning to some or all patients (n=16), the most common gestation for fetal anomaly scan was 20-22 weeks; indeed, the routine anomaly scan was offered at 18-24 weeks in all except one unit (where it is offered in the 3rd trimester).

The time allotted for a complete fetal anatomical survey was 10-15 minutes in 4 (25%) units, 20 minutes in 7 (44%) units and 25-30 minutes in 5 (31%) units. Within units offering fetal anomaly scanning, information on the scan provided routinely to pregnant women ranged from verbal information only (n=5, 31%) to both written and verbal information (n=9, 56%). Eighty percent of units used a formal written/computerised checklist to complete the fetal anatomical survey. Written guidelines on the appropriate management of “soft markers” for fetal aneuploidy were routinely used in 11/16 (69%) of units. Overall, 9/16 (56%) of Irish obstetric ultrasound units routinely keep a record (either hard-copy or computerised image) of images from the fetal anomaly ultrasound. On patient request, 80% (16/20) of Irish obstetric units reported they will routinely reveal fetal gender and the remaining 20% do not. Within units prepared to reveal gender, the diagnosis is made at ≥16 weeks, ≥18 weeks and ≥20 weeks in 12%, 44% and 44% respectively.

Respondents were also surveyed on the staff who routinely perform fetal anomaly scanning in their unit. Within units offering fetal anomaly scanning, these are performed exclusively by midwife ultrasonographers or radiographers in 81% (n=13) of units, exclusively by consultant obstetricians in 13% (n=2) and by a combination of consultants and midwives in the remaining unit (6%; Figure 2). Fetal anomaly scanning was not routinely undertaken by non-consultant hospital doctors in any unit. In no Irish unit currently, are images from fetal anomaly scanning routinely reviewed by an Obstetrician with an interest in fetal medicine. Although the principal aim of this survey was to establish current practices in Irish routine fetal anomaly scanning, we also questioned respondents on early pregnancy ultrasonography within their units. A routine first trimester scan (14 weeks) is offered to all patients in 13/20 (65%) of units and offered to some patients by 6/20 (30%) of units, generally for a previous obstetric history of clinical indication (pain, bleeding) in the current pregnancy. One unit does not provide 1st trimester dating scans for any women. In 10/19 (53%) units, dating ultrasounds are performed exclusively by midwife ultrasonographers and radiographers. In 2011, 14/20 (70%) of Irish obstetric units were not offering nuchal translucency (NT) scanning as part of a screening package for fetal aneuploidy.

Finally, respondents were asked how many ultrasound scans they believed should be offered to routinely to a woman in an uncomplicated pregnancy. All but one (95%) of those surveyed believed that a minimum of 2 scans should be offered routinely and more than half of clinicians surveyed (55%) felt that women with uncomplicated pregnancies should be offered 3 ultrasound scans (Figure 3).

Discussion

As is noted in the recent ISUOG guideline, the purpose of the mid-trimester fetal anomaly scan is “to provide accurate diagnostic information for the delivery of optimized antenatal care”.7 The Eurofetus study, involving 14 European countries, reported an overall detection rate of 56% for structural fetal anomalies, rising to 74% when only major anomalies are considered.13 Prenatal diagnosis of a major fetal defect facilitates intrapartum and postpartum planning, allows psychological preparation on the part of the parents and may, in a few selected cases, allow the option of in utero fetal therapy to improve prognosis.14-16 In addition antenatal diagnosis of a lethal fetal chromosomal defect avoids unnecessary caesarean section in the fetal interest. Some women may opt for pregnancy termination at this stage. For these reasons, both the RCOG and NICE support the offering of a mid-trimester anomaly scan to all pregnant women, ideally at the 18-20 weeks stage.13

Results from the present survey demonstrate a wide variation in the delivery of obstetric ultrasound services to pregnant women in Ireland. One of the more contentious results is the finding that, in 65% of Irish maternity units, women are not universally offered a mid-trimester scan for detection of fetal abnormalities. The concept of screening for fetal anomalies and the possibility of subsequent termination of pregnancy does raise certain ethical dilemmas for many patients and practitioners. Traditionally, religious and cultural considerations and the unavailability of pregnancy termination in Ireland have meant that Irish obstetric practice has been less “proactive” in identifying major structural fetal anomalies. There is also continuing debate on the benefits of routine 1st trimester pregnancy scanning. Although the RCOG recommends an early pregnancy ultrasound scan for all women,2 a recent study found that routine booking ultrasound scans were associated with a small reduction in post-term pregnancy although there was little impact on the detection of clinically-significant anomalies.17 The current survey finds that 35% of pregnant women in Ireland were not offered a routine 1st trimester ultrasound scan.

Expanding the availability of fetal anomaly scanning in Ireland would require close adherence to minimum standards of practice. The RCOG clearly recommends that all women should be provided with written information prior to the scan, that 20 minutes should be allocated to the anomaly survey and that, if required, referral to a fetal medicine specialist should be within 72 hours.1 Furthermore, all scan results should be clearly documented and archived, with a move towards developing computer-based records.1 A 2007 survey of Irish obstetric centres reported that only 19% of units were routinely performing routine fetal anomaly scanning.8 Although the current survey demonstrates an increase in this proportion over the last 5 years, further progress is required. Improvements in the availability of obstetric ultrasound to pregnant women in Ireland will require increased staffing numbers at both the ultrasonographer and fetal specialist levels. There is a clear need for national guidelines on the provision of routine obstetric ultrasound in Ireland.

Correspondence: P McParland
Fetal Medicine Unit, National Maternity Hospital, Holles St, Dublin 2
Email: petermcp@nmh.ie
Clinical Tetanus in an 11 Year Old Boy

L Brandon, NF Nurdin, M Byrne, E Moylett
Department of Paediatrics, National University of Ireland, Galway

Introduction
Following the implementation of a successful vaccination programme, there are many infectious diseases we consider effectively dealt with, almost to the point of eradication, tetanus is one such condition that the majority of currently practicing clinicians will never encounter. We report a recent case of tetanus in an unvaccinated 11-year-old Irish boy.

Case Report
An 11-year old boy presented to the emergency department (ED) 12 days following a puncture wound to his right foot sustained while playing barefoot outdoors. Four days prior to presentation, he experienced pain in his left jaw and teeth, and over the following two days developed chest tightness, and became unable to open his mouth fully, tolerating only pureed food and liquids. He attended his general practitioner (GP), and was commenced on amoxicillin/clavulanic acid for a possible dental infection. Owing to worsening symptoms he represented to his GP at which time clinical tetanus was suspected and he was referred to the ED; no medical history of relevance; the child was unvaccinated. On examination, the patient was noted to be well in no acute distress, vital signs within normal range for age. Of significance, there was marked spasm of the patient’s jaw muscles with limited opening demonstrated (Figure 1). Neurological exam revealed hypertonicity of upper and lower limbs with brisk deep tendon reflexes throughout; gait was scissoring in nature. At the site of the initial foot injury, was a small eschar with minimal local tenderness. The remainder of the examination was unremarkable.

Baseline laboratory investigations were all within normal range. Baseline tetanus toxoid level was negative. Wound debridement and cleansing of the puncture wound site revealed a one-inch thorn which was removed from the patient’s foot (Figure 2). Intra-operatively obtained samples of purulent material failed to identify any anaerobic pathogens, Staphylococcus aureus was identified from aerobic plates. Intramuscular tetanus immunoglobulin 5000 IU (150 IU per kg) was administered. The patient completed a 10-day course of flucloxacillin and metronidazole. Apart from naso-gastric feeding (severe tongue swelling and ulceration) and repeated painful muscle spasms for a 7-day period, the patient had an uncomplicated hospital course. The patient remained hospitalised for 17 days, in the intensive care unit. Tetanus immunisation (6:1 vaccine) was commenced prior to discharge; despite advice and education, his siblings remain unvaccinated.

Discussion
Tetanus can be acquired at any point in an unvaccinated child’s life; a rare clinical entity but with associated mortality figures approaching 50%.1 Tetanus has been a notifiable disease in Ireland; a national survey, Ir J Med Sci 2007; 176: 175-9.2

References
Bronchiolitis affects one third of babies in their first year of life. We investigated all bronchiolitis admissions to Tallaght Hospital in the last five years, with the hope of providing an insight into the epidemic in an Irish population. We analysed these 1,202 admissions on the basis of time of year (busiest being December at 24.2%), length of stay (mean 2.92 days), gender (62% male) and age (mean 30.29 weeks). There was a 102% increase in the average incidence of bronchiolitis in the first six months of 2011 and 2012 (186) compared to the previous four years (92.25). P value was statistically significant at 0.0469. Our findings were backed up by comparable data from OLCH, Crumlin (149.5 for 2011-2012 vs 36.25 for 2007-2010). There has been in a significant shift in the timing and incidence of bronchiolitis in Tallaght Hospital in the last two years. We explored the possible reasons for this, with special attention to RSV incidence, climate causes and vaccine programs.

References

children stayed only one day, 24% 2 days and 17% 3 days. 5% of children stayed one week or more. The busiest month was December, with 24.2% of cases for the whole 5 years. This was followed by November with 16.1%, January with 15.1%, February with 9.5%, March with 8.4%, October with 6.3%, April with 6.1% and September with 4.7%. The other four months contributed less than 3.5% each to the total figures.

Interestingly, however, there appears to have been a large increase in the occurrence of bronchiolitis in the early part of both 2011 and 2012. Compared to the previous three years, the spike in numbers at the end of 2010 was less than what should have been expected (see Figure 1). This resulted in a substantially lower than average total for 2010. There was then a subsequent large rise in the early part of 2011. Again, the spike at the end of the year was less than what would have been expected for the years prior to 2010. However, the large increase in numbers at the start of the year was more than enough to compensate for this, and resulted in 2011 been the busiest year in our dataset. This rise in numbers in the early part of the year has continued into 2012, with the first 6 months of 2012 being the busiest of any year in our dataset. In fact, the first 4 months of 2012 had more admissions with bronchiolitis than all of 2010 (189 vs 188).

Table 1 Averag admission figures for the first 6 months of the year 2007-2010

<table>
<thead>
<tr>
<th>Month</th>
<th>2007-2010</th>
<th>2011-2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>90</td>
<td>575</td>
</tr>
<tr>
<td>February</td>
<td>185</td>
<td>52</td>
</tr>
<tr>
<td>March</td>
<td>142.5</td>
<td>44.5</td>
</tr>
<tr>
<td>April</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>May</td>
<td>8.75</td>
<td>65</td>
</tr>
<tr>
<td>June</td>
<td>6.75</td>
<td>73</td>
</tr>
<tr>
<td>6 month total</td>
<td>92.25</td>
<td>186</td>
</tr>
</tbody>
</table>

Figure 1 Large spike in numbers of admissions with bronchiolitis in the early part of 2011 and 2012, compared to the previous 4 years

Discussion

There was a statistically significant increase in the number of bronchiolitis cases in Tallaght Hospital in the early part of 2011 and 2012 compared to the previous four years. There was a similar increase in RSV positive bronchiolitis in Our Lady’s Children’s Hospital, Crumlin in the same time period. These figures correspond to those of the Irish Health Protection Surveillance Centre, which show an increase in RSV positive test results in the early part of 2011. These figures have continued in a similar vein into 2012. The cause for this increase is not fully apparent. It is postulated that variations in bronchiolitis and RSV epidemics can be due to both climate and climate independent factors. Epidemiologic evidence of climate influences on RSV epidemics is substantial. In Europe, annual RSV epidemics have traditionally begun in the coldest parts of the continent – Northern Russia/Finland first, in October. The epidemics then follow climatic conditions relatively closely until the epidemics start in the Mediterranean in the Spring. Various factors have been theorised as being at play, such as a reduction in UVB radiation inactivation of the virus or an alteration in host resistance with temperature.

In Ireland, 2010 was an exceptionally cold year, with December temperatures nearly 5% lower than normal. This difference may have been a significant contributor to the change in the epidemic pattern. With regard climate independent factors, from November 2009-March 2010, a national vaccination programme for H1N1 influenza was launched. It is possible that this had some effect on immunity levels for respiratory pathology in general, possibly shifting the timing of the bronchiolitis epidemic. Essentially it may never be known why there was a shift in the timing of the annual bronchiolitis epidemic into 2010, and why this continued into 2012. Future investigation is warranted to evaluate if this trend continues, and what factors may be contributing to it. As a large contributor to ill health in Ireland’s paediatric population, close monitoring of it is vital to future planning of our health service.

Correspondence: G O’Connor
Department of General Practice, Tallaght Hospital, Tallaght, Dublin 24
Email: gearoid_oc@hotmail.com

Acknowledgements

Bronchiolitis Service, OLCH

References

Safety Comes First: Are Doctors Attentive Enough to their Initial Clinical Assessment Notes?
C Daly, I Callanan, M Butler
St Vincent’s University Hospital, Elm Park, Dublin 4

Abstract
Accurate hospital admission/initial history and physical examination (H&P) notes are vital to support patient care. We aimed to assess the quality of H&P notes and to compare medical/surgical, and inpatient/outpatient H&P notes. A cross-sectional study examined 154 initial H&P notes for the adherence to a standard protocol in a tertiary referral hospital. 134 doctors (87.1%) adhered to the correct layout in accordance with the standard. Only 77 doctors (50%) recorded the names of the patient’s medications. 105 (68.8%) documented the allergy status. Six doctors (3.9%) omitted an objective record of their own identity. Surgeons were superior at recording admission type (p=0.0001) and past surgical history (p=0.0002) only. The data in this study show that the standard of completeness of the H&P documentation among doctors is suboptimal. We recommend the introduction of a standardised H&P template to reduce errors.

Methods
A cross-sectional survey method was chosen for the study design. The most recent H&P note from 154 active inpatient medical records was selected, from all inpatients on eight wards, at a given time, to minimise selection bias. Twenty active outpatient records were also reviewed, focusing on the first referral visit note. A data collection sheet with variables reflecting fields relevant to the institution’s policy for H&P notes was designed (Table 1). The clinician’s handwritten notes clerking in each admission/new outpatient visit were individually scrutinised to identify documentation of each variable, and scored from 1 to 40. At the authors’ institution, H&P notes are written on continuation forms containing a request to label each page with the patient’s name/hospital number/date of birth either by writing or by attaching an adhesive addressograph label.

Results
154 H&P notes were examined, 53.9% were medical and 46.1% surgical (Table 2). Of the 154 doctors authoring these notes, 27.3% were senior house officers, 21.4% were interns, 19.5% were registrars and 1.3% consultants. 30.5% didn’t document any grade. Patient name/medical record number/date of birth was documented in 95.5% of notes. 46% of H&P had no unique identifier at all. Date of the assessment was recorded in 97.4% of instances, and time in 36.3%. Doctor’s name was written in 50%, however 6.5% of these names were illegible. 22.1% documented the admission type (e.g. elective).

Presenting complaint was purposefully documented in 75.3%. However, 92.2% detailed the history of presenting complaint. Medications were listed by name in 62.3% of records. However only 41.3% recorded medication dose, 3.9% noted the strength, 23.9% noted the route and 29 (34.9%) the frequency.

Table 1: Initial clinical assessment (H&P) note variables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male or Female</td>
</tr>
<tr>
<td>Age</td>
<td>Number</td>
</tr>
<tr>
<td>Medical/Surgical</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Patient name</td>
<td>Yes or No</td>
</tr>
<tr>
<td>MRN/DOB</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Date</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Time</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Dr. Name</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Referral source</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Admission Type</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Presenting Complaint</td>
<td>Yes or No</td>
</tr>
<tr>
<td>History of PC</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Past Medical History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Past Surgical History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medication Name</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medication Dose</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medication Strength</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medication Route</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medication Frequency</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Social History: Occupation</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Social History: Marital Status</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Social History: Living with</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Functional History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Smoking History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Alcohol History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Family History</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Review of Systems</td>
<td>Yes or No</td>
</tr>
<tr>
<td>General exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Vital Temperature</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Vital Blood Pressure</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Vital Respiratory Rate</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Vital Heart Rate</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Cardiovascular exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Cardiopulmonary exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Respiratory exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Gastro-intestinal exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Neuroradiological exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Neurological exam</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Investigations</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Impression</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Plan</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Signature</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Payer number</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Medical Council registration number</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Grade</td>
<td>Yes or No</td>
</tr>
</tbody>
</table>

Table 2: Comparison of documentation rates for medical versus surgical patients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Medical (n=83) (%)</th>
<th>Surgical (n=71) (%)</th>
<th>p-value</th>
<th>Total n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient name</td>
<td>81 (98)</td>
<td>60 (93)</td>
<td>0.2</td>
<td>147 (95.5)</td>
</tr>
<tr>
<td>MRN/DOB</td>
<td>81 (98)</td>
<td>60 (93)</td>
<td>0.2</td>
<td>147 (95.5)</td>
</tr>
<tr>
<td>Date</td>
<td>80 (96.4)</td>
<td>70 (100)</td>
<td>0.6</td>
<td>150 (97.4)</td>
</tr>
<tr>
<td>Time</td>
<td>77 (92.2)</td>
<td>49 (69)</td>
<td>0.3</td>
<td>126 (82.2)</td>
</tr>
<tr>
<td>Dr. Name</td>
<td>74 (89.2)</td>
<td>56 (79)</td>
<td>0.1</td>
<td>130 (84.4)</td>
</tr>
<tr>
<td>Referral source</td>
<td>74 (89.2)</td>
<td>26 (36.6)</td>
<td>0.001</td>
<td>100 (65.2)</td>
</tr>
<tr>
<td>Admission Type</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Presenting Complaint</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>History of PC</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Past Medical History</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Past Surgical History</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Medications (all 5 parameters)</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Alcohol History</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Family History</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Review of Systems</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>General exam (all 5 parameters)</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Cardiovascular exam</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Cardiopulmonary exam</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Respiratory exam</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Gastro-intestinal exam</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Neurological exam</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Investigations</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Impression</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Plan (of care)</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Signature</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Payer number</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Medical Council registration number</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
<tr>
<td>Grade</td>
<td>74 (89.2)</td>
<td>59 (83.1)</td>
<td>0.1</td>
<td>133 (86.4)</td>
</tr>
</tbody>
</table>

1 Data refers to the sum of patients out of a total of 154 patients, unless otherwise stated.
2 Data refers to any of the five medication parameters described in Table 1. Medical column includes data from 69 individuals (14 of the 83 were on no medications; one individual had unknown medication status). Surgical column refers to 55 individuals (41 of the 71 were on no medications, one individual had unknown medication status). Total column relates to a maximum of 150 possible recorded parameters (72 patients x 5 parameters).
3 Data refers to the sum of Social History parameters outlined in Table 1. There was a possible total of 754 recorded parameters (154 patients x 6 parameters).
4 Data refers to recording of a general exam and the four vital signs (five parameters). There was a possible total of 770 recorded parameters (154 patients x 5 parameters).
5 All doctors practicing medicine in Ireland must register with the Irish Medical Council.
5.2% the administration route and 36.4% the administration frequency. Regarding patient social history documentation, 37.7% mentioned occupation, 50% cited living arrangements and 35.1% outlined marital status. Only 20.8% described ability to self-care, though 53.5% of studied patients were ≥65 years old. 52.6% documented smoking history and 46.1% alcohol intake. Patient’s general appearance/mental status was mentioned in 45.5% of instances. Vitals were entered inconsistently i.e. 49.4% recorded heart rate, 46.1% noted blood pressure, 38.9% recorded patient temperature, and 19.5% respiratory rate. 3.2% simply wrote “vitals stable”. Documentation of focused body system examination varied from 70.6% for gastrointestinal system to 20.2% for neurological system.

A quarter of hospital prescribing errors are attributable to incomplete medication histories at the time of admission. Although >50% of doctors recorded medication names, the frequent failure to document dose, route, strength and frequency can lead to prescribing errors, which in the extreme, invite harmful, indefensible mistakes. In addition, poor documentation of drug allergy risks serious consequences. Many H&P parameters were better documented by physicians versus surgeons, suggesting a need for more detailed H&P notes in physician practice compared to surgery, with surgeons focusing more on elective/emergency admission type, and past surgical history. Social history is often overlooked in favour of less holistic aspects of the H&P. Patient discussions concerning return to work/financial and family pressures are informed by knowledge of their occupation, marital status and family composition. The patient’s family history and tobacco/alcohol intake are relevant to risk assessment for atherosclerosis and cancers yet only a minority of admissions documented these variables.

Peixoto described the physical examination as “the physician’s trademark”, however, many H&P notes bypass a thorough record of the patient examination, making diagnostic mistakes less defensible if subsequently challenged. Documentation of vital signs has proved to be inconsistent, especially in inpatient versus outpatients, likely reflecting nurse involvement in outpatient settings. Respiratory rate notation is often omitted, or replaced by pulse oximetry despite evidence showing it is a less accurate measurement of respiratory distress. Tobacco/alcohol intake are relevant to risk assessment for atherosclerosis and cancers yet only a minority of admissions documented these variables.

Concerning differential rates of documentation by physicians versus surgeons, physicians recorded significantly more medications, systematic physical examination findings, investigation results and clinical impressions (p<0.006 all comparisons, Table 2). Surgeons were best at recording admission type (p=0.0001) and past surgical history (p=0.0002). While many parameters were recorded at significantly higher rates in inpatient compared to outpatient episodes, notably time and pager number (p=0.0001), vital signs were better recorded in outpatient notes (p=0.0001, Table 3).

Table 3: Comparison of documentation rates for inpatient versus outpatient

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inpatient (n=134)</th>
<th>Outpatient (n=20)</th>
<th>P-value</th>
<th>Total n (%) out of n=154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient name</td>
<td>127 (94.8)</td>
<td>20 (100)</td>
<td>0.60</td>
<td>147 (95.5)</td>
</tr>
<tr>
<td>M&H/DOB</td>
<td>127 (94.8)</td>
<td>20 (100)</td>
<td>0.60</td>
<td>147 (95.5)</td>
</tr>
<tr>
<td>Date</td>
<td>130 (97)</td>
<td>20 (100)</td>
<td>1.00</td>
<td>150 (97.4)</td>
</tr>
<tr>
<td>Time</td>
<td>56 (41.8)</td>
<td>0 (0)</td>
<td>0.000</td>
<td>56 (36.4)</td>
</tr>
<tr>
<td>Dr. Name</td>
<td>74 (55.2)</td>
<td>3 (15)</td>
<td>0.001</td>
<td>77 (50)</td>
</tr>
<tr>
<td>Referral source</td>
<td>48 (35.6)</td>
<td>6 (30)</td>
<td>0.80</td>
<td>54 (35.1)</td>
</tr>
<tr>
<td>Admission Type</td>
<td>34 (25.4)</td>
<td>0 (0)</td>
<td>0.008</td>
<td>34 (22.1)</td>
</tr>
<tr>
<td>Presenting Com plaint</td>
<td>103 (76.9)</td>
<td>13 (65)</td>
<td>0.27</td>
<td>116 (75.3)</td>
</tr>
<tr>
<td>History of PC</td>
<td>129 (91.8)</td>
<td>10 (50)</td>
<td>0.000</td>
<td>140 (92.2)</td>
</tr>
<tr>
<td>Past Medical History</td>
<td>118 (88)</td>
<td>15 (75)</td>
<td>0.18</td>
<td>133 (88.4)</td>
</tr>
<tr>
<td>Past Surgical History</td>
<td>69 (51.5)</td>
<td>7 (35)</td>
<td>0.23</td>
<td>76 (48.4)</td>
</tr>
<tr>
<td>Medications (all 5 parameters)</td>
<td>215 (93.1)</td>
<td>16 (76)</td>
<td>0.03</td>
<td>231 (175)</td>
</tr>
<tr>
<td>Allergies</td>
<td>97 (72.4)</td>
<td>9 (45)</td>
<td>0.02</td>
<td>106 (68.8)</td>
</tr>
<tr>
<td>Social History (all 6 parameters)</td>
<td>331 (94.8)</td>
<td>34 (22.1)</td>
<td>0.007</td>
<td>365 (93.5)</td>
</tr>
<tr>
<td>Past Medical History</td>
<td>75 (43.1)</td>
<td>7 (35)</td>
<td>0.21</td>
<td>82 (36)</td>
</tr>
<tr>
<td>Review of Systems</td>
<td>39 (25)</td>
<td>2 (10)</td>
<td>0.10</td>
<td>41 (20.6)</td>
</tr>
<tr>
<td>General exam/vitals (all 5 parameters)</td>
<td>289 (68.1)</td>
<td>18 (90)</td>
<td>0.000</td>
<td>307 (197)</td>
</tr>
<tr>
<td>Cardiovascular exam</td>
<td>101 (75.4)</td>
<td>8 (40)</td>
<td>0.003</td>
<td>109 (70.6)</td>
</tr>
<tr>
<td>Respiratory exam</td>
<td>107 (75.4)</td>
<td>14 (70)</td>
<td>0.002</td>
<td>121 (78.8)</td>
</tr>
<tr>
<td>Gastrointestinal exam</td>
<td>109 (91.3)</td>
<td>9 (45)</td>
<td>0.011</td>
<td>118 (77.6)</td>
</tr>
<tr>
<td>Neurological exam</td>
<td>42 (31.3)</td>
<td>3 (15)</td>
<td>0.19</td>
<td>45 (29.2)</td>
</tr>
<tr>
<td>Immunisations</td>
<td>127 (94.8)</td>
<td>7 (30)</td>
<td>0.15</td>
<td>134 (87.5)</td>
</tr>
<tr>
<td>Impression</td>
<td>70 (52.2)</td>
<td>5 (25)</td>
<td>0.03</td>
<td>75 (47.8)</td>
</tr>
<tr>
<td>Plan</td>
<td>131 (97.6)</td>
<td>16 (80)</td>
<td>0.006</td>
<td>147 (95.5)</td>
</tr>
<tr>
<td>Signature</td>
<td>132 (97.6)</td>
<td>17 (85)</td>
<td>0.03</td>
<td>149 (96)</td>
</tr>
<tr>
<td>Pager number</td>
<td>84 (75)</td>
<td>3 (15)</td>
<td>0.000</td>
<td>87 (59)</td>
</tr>
<tr>
<td>Medical Council Registration number</td>
<td>45 (33.6)</td>
<td>2 (10)</td>
<td>0.04</td>
<td>47 (30.5)</td>
</tr>
</tbody>
</table>

1 In refers to the number of patients out of a total of 154 patients, unless otherwise stated
2 Data refers to the sum of any of the five medication parameters described in Table 1. Inpatient column includes data from 110 individuals (22 of the 134 were on no medications, 2 individuals had unknown medication status). Outpatient column refers to 113 individuals (7 patients of the 20 were not on medications). Total column relates to a minimum of 615 possible recorded parameters (123 patients x 5 parameters).
3 Data refers to the six Social History parameters outlined in Table 1. There was a possible total of 524 recorded parameters (154 patients x 6 parameters).
4 Data refers to a recording of a general exam and the four vital signs (five parameters). There was a possible total of 770 recorded parameters (154 patients x 5 parameters).

Regarding author identity, while more than 95% signed their H&P, most names were illegible and two-thirds omitted a pager number. The most recent Medical Practitioners Act in Ireland requires doctors to document their medical council registration number for practitioner identification yet in this study less than one-third of doctors abided by this regulation. Interestingly, there was no correlation between documentation comprehensiveness and grade of professional seniority. Electronic medical records can incorporate mandatory fields of data entry that must be completed in order to proceed. The use of password encryption could circumvent issues of author identity/timeing. In the absence of such technology, doctors could involve patients by having them complete a template form comprising the main fields of a standard patient history, which is then augmented during the consultation. Ideally these efforts should be coordinated through high-level committees charged with responsibility for improving documentation, and be widely promoted within individual healthcare institutions.

The present study shows that the completeness of the H&P set out by the author's institutional policies, is suboptimal among admitting doctors. While some results are encouraging, the majority of H&P are incomplete and there is considerable potential for improvement. There is a continued need, for the
Validation of the VitalPACTM Early Warning Score (ViEWS) in Acutely Ill Medical Patients Admitted

Sir

The VitalPACTM early warning score was derived from 198,755 vital sign sets and has an area under the receiver operator characteristic curve (AUROC) for death of acute unselected medical patients within 24 h of 88%. It is currently the best performing early warning score and is the basis of the National Early Warning Scores of the UK and Ireland. ViEWS was derived from acutely ill unselected medical patients with an in-hospital mortality of 8% and a 24 hour mortality of 1%. Although the score’s discrimination has been validated in North America and sub-Saharan Africa it has not been validated in an Irish hospital.

The vital signs of all patients admitted to Nenagh Hospital through its Medical Assessment Unit (MAU) between August 6th 2011 and November 23rd 2012 were entered into a program that automatically calculated ViEWS. During the study period 3117 patients were admitted to the hospital of whom 86 died (2.8%) – the MAU admitted 81% of these patients. Data on 2519 individual patients and 8,823 sets of vital signs were recorded and available for analysis. Seventy seven of the 2519 patients entered into the study (3.1%) died in hospital and 36 of these patients (1.4%) died within 24 hours of their vital signs being recorded. No deaths occurred within 24 hours in the 982 patients with a ViEWS value of zero, and only 5 deaths occurred in patients with a ViEWS value from 1-3. The AUROC for ViEWS was 90.8% (95% CI 84.2-97.3%). The discrimination of ViEWS, therefore, in Nenagh General Hospital is the same as originally reported in UK, and in North America and sub-Saharan Africa patients.

J Kellett, M Clifford, A Ridley, M Gleeson
Nenagh General Hospital, Nenagh, Co Tipperary
Email: jgkellett@eircom.net

References

Cancer Incidence and Mortality due to Alcohol: An Analysis of 10-Year Data

Question 1
The number of males in the study was

- a) 4185
- b) 4285
- c) 4385
- d) 4485
- e) 4585

Question 2
The number of females in the study was

- a) 4193
- b) 4293
- c) 4393
- d) 4493
- e) 4593

Question 3
In males the proportion of upper aero-digestive cancers attributable to cancer was

- a) 32.9%
- b) 42.9%
- c) 52.9%
- d) 62.9%
- e) 72.9%

Question 4
In females the proportion of upper aero-digestive cancers attributable cancer was

- a) 25.2%
- b) 35.2%
- c) 45.2%
- d) 55.2%
- e) 65.2%

Question 5
Every year the number of new cancer cases attributable to alcohol is

- a) 500
- b) 600
- c) 700
- d) 800
- e) 900

Are Irish Adult General Practice Consultation Rates as Low as Official Records Suggest? A Cross Sectional Study at Six General Practices

Question 1
The study population was

- a) 16,706
- b) 17,706
- c) 18,706
- d) 19,706
- e) 20,706

Question 2
The mean consultation rate was

- a) 4.17
- b) 5.17
- c) 6.17
- d) 7.17
- e) 8.17

Question 3
The consultation rate among GMS patients was

- a) 3.7
- b) 4.7
- c) 5.7
- d) 6.7
- e) 7.7

Question 4
The number of GMS consultations annually are

- a) 14.4 million
- b) 15.4 million
- c) 16.4 million
- d) 17.4 million
- e) 18.4 million

Question 5
It is estimated that a total free GP service would increase the annual number of consultations by

- a) 1.4 million
- b) 2.4 million
- c) 3.4 million
- d) 4.4 million
- e) 5.4 million

Adverse Event Recording Post Hip Fracture Surgery

Question 1
The sample size was

- a) 29
- b) 39
- c) 49
- d) 59
- e) 69

Question 2
The mean age was

- a) 75.5 years
- b) 80.5 years
- c) 85.5 years
- d) 90.5 years
- e) 95.5 years

Question 3
The number of adverse events was

- a) 40
- b) 45
- c) 50
- d) 55
- e) 60

Question 4
The number of cases of urinary retention was

- a) 5
- b) 6
- c) 7
- d) 8
- e) 9

Question 5
The number of cases of anaemia was

- a) 6
- b) 8
- c) 10
- d) 12
- e) 14
Deposit Options
- Pension & Retirement Planning
- Spouse & Staff Pensions
- Practice & Family Protection
- Succession & Inheritance Tax Planning
- Partnerships & Provisions for Exit Strategies
- Savings & Investments
- Member Group Schemes
- Surgery, Home, Motor, Travel Insurance
- Free Financial Reviews

Take control of your future with IMO Financial Services
Specialist Financial Consultant to Doctors

For more information please contact IMO Financial Services | T: 01 6618299 | E: imofs@imo.ie
Visit our new website at www.imo.ie/financial-services/

Fitzserv Consultants Ltd., trading as IMO Financial Services is regulated by the Central Bank of Ireland